The effect of structure parameters on the electroluminescence and photoconductivity of multilayer structures with self-assembled Ge(Si)/Si(0 0 1) islands has been studied. The highest intensity of the room-temperature electroluminescence in the wavelength range of 1.3-1.55 μm has been observed for the islands grown at 600 • C. The same diode structures with Ge(Si)/Si(0 0 1) islands have demonstrated room-temperature photoconductivity signals in the wavelength range of 1.3-1.55 μm. The observed overlap of the electroluminescence and photoconductivity spectra obtained for the same structures with Ge(Si) islands makes these structures a promising material for the fabrication of a Si-based optocoupler. Less degradation after neutron irradiation has been observed for the electroluminescence and photoconductivity signals from multilayer structures with Ge(Si) self-assembled islands in comparison with bulk silicon structures. This result is associated with more effective confinement of charge carriers in the multilayer structures with Ge(Si) islands.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.