Stable suspensions of nanogold (NG) and nanosilver (NS) with mean particle diameter 50 and 49 nm, respectively, were prepared by laser ablation of metals in water. To assess rat’s pulmonary phagocytosis response to a single intratracheal instillation of these suspensions, we used optical, transmission electron, and semi-contact atomic force microscopy. NG and NS were also repeatedly injected intraperitoneally into rats at a dose of 10 mg/kg (0.5 mg per mL of deionized water) three times a week, up to 20 injections. A group of rats was thus injected with NS after oral administration of a “bioprotective complex” (BPC) comprised of pectin, multivitamins, some amino acids, calcium, selenium, and omega-3 PUFA. After the termination of the injections, many functional and biochemical indices and histopathological features of the spleen, kidneys and liver were evaluated for signs of toxicity, and accumulation of NG or NS in these organs was measured. From the same rats, we obtained cell suspensions of different tissues for performing the RAPD test. It was demonstrated that, although both nanometals were adversely bioactive in all respects considered in this study, NS was more noxious as compared with NG, and that the BPC tested by us attenuated both the toxicity and genotoxicity of NS.
Aqueous suspension of magnetite nanoparticles with primary diameter of 10 nm were intratracheally administered into rat lungs. In 24 h, cells were isolated from bronchoalveolar lavage and examined under a transmission electron microscope. Alveolar macrophages demonstrated ability to actively uptake single nanoparticles and small aggregates composed of such particles, which then formed larger conglomerates inside fused phagosomes. Some of these mature phagosomes shed the membrane and free nanoparticles closely interacted with nuclear membrane and with cristae and mitochondrial membranes thereby inflicting pronounced damage to these intracellular structures. The loss of primary lysosomes can be viewed as indirect evidence attesting to the role played by diffusion of lysosomal hydrolytic enzymes in the final destruction of the alveolar macrophages provoked by nanoparticles.
We used stable water suspensions of copper oxide particles with mean diameter 20 nm and of particles containing copper oxide and element copper with mean diameter 340 nm to assess the pulmonary phagocytosis response of rats to a single intratracheal instillation of these suspensions using optical, transmission electron, and semi-contact atomic force microscopy and biochemical indices measured in the bronchoalveolar lavage fluid. Although both nano and submicron ultrafine particles were adversely bioactive, the former were found to be more toxic for lungs as compared with the latter while evoking more pronounced defense recruitment of alveolar macrophages and especially of neutrophil leukocytes and more active phagocytosis. Based on our results and literature data, we consider both copper solubilization and direct contact with cellular organelles (mainly, mitochondria) of persistent particles internalized by phagocytes as probable mechanisms of their cytotoxicity.
According to global data, there is a male reproductive potential decrease. Pathogenesis of male infertility is often associated with autoimmunity towards sperm antigens essential for fertilization. Antisperm autoantibodies (ASAs) have immobilizing and cytotoxic properties, impairing spermatogenesis, causing sperm agglutination, altering spermatozoa motility and acrosomal reaction, and thus preventing ovum fertilization. Infertility diagnosis requires a mandatory check for the ASAs. The concept of the blood–testis barrier is currently re-formulated, with an emphasis on informational paracrine and juxtacrine effects, rather than simple anatomical separation. The etiology of male infertility includes both autoimmune and non-autoimmune diseases but equally develops through autoimmune links of pathogenesis. Varicocele commonly leads to infertility due to testicular ischemic damage, venous stasis, local hyperthermia, and hypoandrogenism. However, varicocelectomy can alter the blood–testis barrier, facilitating ASAs production as well. There are contradictory data on the role of ASAs in the pathogenesis of varicocele-related infertility. Infection and inflammation both promote ASAs production due to “danger concept” mechanisms and because of antigen mimicry. Systemic pro-autoimmune influences like hyperprolactinemia, hypoandrogenism, and hypothyroidism also facilitate ASAs production. The diagnostic value of various ASAs has not yet been clearly attributed, and their cut-levels have not been determined in sera nor in ejaculate. The assessment of the autoimmunity role in the pathogenesis of male infertility is ambiguous, so the purpose of this review is to show the effects of ASAs on the pathogenesis of male infertility.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.