Formulations of antioxidant enzymes, superoxide dismutase 1 (SOD1, also known as Cu/Zn SOD) and catalase were prepared by electrostatic coupling of enzymes with cationic block copolymers, polyethyleneimine-poly(ethylene glycol) or poly(L-lysine)-poly(ethylene glycol), followed by covalent cross-linking to stabilize nanoparticles. Different cross-linking strategies (using glutaraldehyde, bis-(sulfosuccinimidyl)suberate sodium salt or 1-Ethyl-3-[3-dimethylaminopropyl]carbodiimide hydrochloride with N-hydroxysulfosuccinimide) and reaction conditions (pH and polycation/protein charge ratio) were investigated that allowed immobilizing active enzymes in cross-linked nanoparticles, termed “nanozymes”. Bi-enzyme nanoparticles, containing both SOD1 and catalase were also formulated. Formation of complexes was confirmed using denaturing gel electrophoresis and western blotting and physicochemical characterization was conducted using dynamic light scattering and atomic force microscopy. In vivo studies of 125I-labeled SOD1-containing nanozymes in mice demonstrated its increased stability in both blood and brain and increased accumulation in brain tissues, compared to non-cross-linked complexes and native SOD1. Future studies will evaluate potential of these formulations for delivery of antioxidant enzymes to central nervous system to attenuate oxidative stress associated with neurological diseases.
In the study, MCF-7 human breast adenocarcinoma cells were used to study cytotoxicity of novel anticancer nanosized formulations, such as docetaxel-loaded nanoemulsion and liposomal formulation of a lipophilic methotrexate (MTX) prodrug. In vitro study of cytotoxicity was carried out in 2 models, namely using 3D in vitro model based on multicellular tumor spheroids (MTS) and 2D monolayer culture. MTS were generated by tumor cell cultivation within alginate-oligochitosan microcapsules. In the case of the monolayer culture, cell viability was found to be 25, 18 and 12% for the samples containing nanoemulsion at concentrations 20, 300 and 1000 nM of docetaxel, respectively, after 48 hs incubation. For MTS these values were higher, namely 33, 23 and 18%, respectively. Cytotoxicity of liposomal MTX prodrug-based formulation with final concentration of 1, 2, 10, 50, 100 and 1000 nM in both models was also studied. MTX liposomal formulation demonstrated lower cytotoxicity on MTS compared to intact MTX. Moreover, MTS were also more resistant to both liposomal formulation and intact MTX than the monolayer culture. Thus, at 1000 nM MTX in the liposomal form, cell viability in MTS was 1.4-fold higher than that in the monolayer culture. MTS could be proposed as a promising tool to test novel anticancer nanosized formulations in vitro.
The kinetics of the thermal inactivation of recombinant wild–type formate dehydrogenase
from Candida boidinii yeast was studied in the temperature range of
53–61oC and pH 6.0, 7.0, and 8.0. It was shown that the loss of the
enzyme’s activity proceeds via a monomolecular mechanism. Activation parameters
∆Н and ∆S were calculated based on the temperature
relations dependence of inactivation rate constants according to the transition state theory.
Both parameters are in a range that corresponds to globular protein denaturation processes.
Optimal conditions for the stability of the enzyme were high concentrations of the phosphate
buffer or of the enzyme substrate sodium formate at pH = 7.0.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.