In recent times, visible light communication is an emerging technology that supports high speed data communication for wireless communication systems. However, the performance of the visible light communication system is impaired by inter symbol interference, the time dispersive nature of the channel, and nonlinear features of the light emitting diode that significantly reduces the bit error rate performance. To address these problems, many environments offer a rich infrastructure of light sources for end-to-end communication. In this research paper, an effective routing protocol named the modified grasshopper optimization algorithm is proposed to reduce communication interruptions, and to provide alternative routes in the network without the need of previous topology knowledge. In this research paper, the proposed routing protocol is implemented and analyzed using the MATLAB environment. The experimental result showed that the proposed routing protocol adapts to dynamic changes in the communication networks, like obstacles and shadows. Hence, the proposed protocol achieved better performance in data transmission in terms of throughput, packet delivery ratio, end-to-end delay, and routing overhead. In addition, the performance is analyzed by varying the number of nodes like 50, 100, 250, and 500. From the experimental analysis, the proposed routing protocol achieved maximum of 16.69% and minimum of 2.20% improvement in packet delivery ratio, and minimized 0.80 milliseconds of end-to-end delay compared to the existing optimization algorithms.
Jammers can awfully interfere with the wireless communications. The transmission and reception of wireless communication is blocked by the jammer. The intruder will place the jammer in a well topological network area and they can easily track the information. It will help them to block the signal transmission and reception. Now, the intention is to track the position of the jammer where it is fixed. The existing methods rely on the indirect measurements and the boundary node to find the jammer's position which degrades the accuracy of the localization. To improve the efficiency, this paper proposed an efficient method namely Coincered Node Based Localization of jammers to find the position of the jammer with high level of accuracy. The proposed system uses the direct measurements, which is the jammer signal strength. The effectiveness can also be increased by using the coincered node that will stumble across the true position of the jammer. The proposed work is compared with existing methods. Then the proposed mechanism proves better to find the jammer location. The simulation results estimate that the accuracy of the localization achieves better performance than the existing schemes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.