Sloshing in LNG tanks has gained increasing attention over the past period of time. This is mainly caused by developments in the LNG market, changes in the design and operation of LNG ships and an increasing interest in floating gas field exploitation. The issue of sloshing in partially filled tanks is relevant for spot trading and offshore loading/off loading of LNG ships as well as for FPSOs with LNG capacity. DNV has developed a step-by-step experimental procedure to determine sloshing loads for structural analysis of the insulation system and tank support structure. Of key importance for a reliable evaluation is the step-by-step approach, putting emphasis on an accurate treatment of every step. This means careful modelling of operational and environmental conditions, accurate ship motion calculations, a well-defined procedure for identifying design sea states, a proper experimental set-up and an accurate treatment of the statistics involved in every step in order to determine reliable and realistic design sloshing pressures. To study sloshing loads in partially filled LNG tanks irregular sloshing experiments have been conducted for head and beam seas for different filling levels and sea severities. A 1/20 scale model of a tank from a 138.000 m3 membrane type LNG ship was used for the tests. Measurements have been conducted using pressure transducers and pressure transducers mounted in clusters. An overview of the tests is given with an analysis of the impact pressure statistics, the pressure pulses and the associated subjected area. From these analyses a discussion is presented on the effect of different filling levels, sea severity, ship speed and heading. Introduction The gas market is in an upswing and will in the future provide an increasing part of the world energy demand. A large part of the natural gas reserves will be transported by sea from well to customer. Several changes are seen in the offshore production of gas and the sea-borne transportation of LNG. Floating installations to produce offshore gas is an upcoming market. In case of liquefied storage, present filling restrictions will be violated implicitly. In the LNG shipping industry three main changes are seen or expected:The LNG market is expected to develop more into a spot-market instead of long-term contracts. This view is supported by the fact that LNG carriers have beenordered without having a first transportation contract. As a consequence of spot-market trading shipowners prefer to increase their trading flexibility by having the possibility to operate with not-fully loaded tanks, which would imply a reduction of the upper filling restriction.A second change is foreseen in the maximum size of LNG carriers. By a market-push to reduce transportation costs the maximum size of LNG vessels will increase.A third change is foreseen in the location of loading and offloading. With an increasing focus on safety, supported by the threat of terrorism, it is becoming difficult to build land-based terminals for loading and off-loading, especially in the US. Offshore terminals, far away from dense populated areas are the logical solution, but with the implication of more severe environmental conditions when loading or discharging.
Over the recent years, following the very rapid increase in the construction and installation of offshore structures, there has been a considerable growth of interest in the assessment of the probabilities and consequences of collision and damage of such structures. This is reflected by the very large number of papers published over the last 15 yr and the multitude of conferences and meetings held on the subject. Many research programs have been completed or are in progress at many centers and institutions over the world. Accidental loading and damage are now accepted design parameters recommended for consideration in a number of Codes for the design in offshore structures. This paper reviews the state-of-the-art with respect to the probabilities and consequences of collisions and accidental loading in general, and methods for the assessment of the design of steel offshore structures against damage. Most of the available information in the field of offshore collisions and accidental loading emanates from research and experience related to ship safety. However, in this paper emphasis is placed on research activity and available information concerned with offshore structures, such as platforms, semisubmersibles, etc. There is a considerable amount of information available on methods for evaluating the extent and effects on damage of these structures and in estimating their residual strength in the damaged condition. As this is an area currently of major interest in the offshore industry, the paper presents comprehensive information and some new results relating to all major structural components. The state-of-the-art with regards to methods and principles for design against damage is also reviewed and commented upon. The paper concludes with general recommendations and indications of areas where future research could be most usefully directed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.