Invariance under the charge, parity, time-reversal (CPT) transformation 1 is one of the fundamental symmetries of the standard model of particle physics. This CPT invariance implies that the fundamental properties of antiparticles and their matter-conjugates are identical, apart from signs. There is a deep link between CPT invariance and Lorentz symmetry-that is, the laws of nature seem to be invariant under the symmetry transformation of spacetimealthough it is model dependent 2 . A number of high-precision CPT and Lorentz invariance tests-using a co-magnetometer, a torsion pendulum and a maser, among others-have been performed 3 , but only a few direct high-precision CPT tests that compare the fundamental properties of matter and antimatter are available [4][5][6][7][8] . Here we report high-precision cyclotron frequency comparisons of a single antiproton and a negatively charged hydrogen ion (H 2 ) carried out in a Penning trap system. From 13,000 frequency measurements we compare the charge-to-mass ratio for the antiproton (q=m) p to that for the proton q=m ð Þ p and obtain q=m ð{12 . The measurements were performed at cyclotron frequencies of 29.6 megahertz, so our result shows that the CPT theorem holds at the atto-electronvolt scale. Our precision of 69 parts per trillion exceeds the energy resolution of previous antiproton-toproton mass comparisons 7,9 as well as the respective figure of merit of the standard model extension 10 by a factor of four. In addition, we give a limit on sidereal variations in the measured ratio of ,720 parts per trillion. By following the arguments of ref. 11, our result can be interpreted as a stringent test of the weak equivalence principle of general relativity using baryonic antimatter, and it sets a new limit on the gravitational anomaly parameter of a g {1 , 8.7 3 10 27 . The standard model is the theory that describes particles and their fundamental interactions, although without taking into account gravitation. However, this model is known to be incomplete, which has inspired searches for physics beyond the standard model, such as tests of CPT invariance that compare the fundamental properties of matterto-antimatter equivalents at the lowest energies and with the greatest precision [12][13][14][15] . For leptons, for example, the magnetic anomalies of electron and positron were compared with a fractional uncertainty of about 2 parts per billion 4 , and by applying similar techniques to protons and antiprotons, the resulting g-factor (a proportionality constant which links the spin of a particle to its magnetic moment) comparison reached a precision of 4.4 parts per million 8 . We are planning to improve this measurement by at least a factor of a thousand 16,17 . In this context, we recently reported the most precise and first direct high-precision measurement of the proton magnetic moment, with a fractional precision of 3.3 parts per billion 18 . Complementary to these efforts, spectroscopic comparisons of hydrogen and antihydrogen are underway; recent progress has been...
Antihydrogen, a positron bound to an antiproton, is the simplest antiatom. Its counterpart—hydrogen—is one of the most precisely investigated and best understood systems in physics research. High-resolution comparisons of both systems provide sensitive tests of CPT symmetry, which is the most fundamental symmetry in the Standard Model of elementary particle physics. Any measured difference would point to CPT violation and thus to new physics. Here we report the development of an antihydrogen source using a cusp trap for in-flight spectroscopy. A total of 80 antihydrogen atoms are unambiguously detected 2.7 m downstream of the production region, where perturbing residual magnetic fields are small. This is a major step towards precision spectroscopy of the ground-state hyperfine splitting of antihydrogen using Rabi-like beam spectroscopy.
Abstract. The Baryon Antibaryon Symmetry Experiment (BASE) aims at performing a stringent test of the combined charge parity and time reversal (CPT) symmetry by comparing the magnetic moments of the proton and the antiproton with high precision. Using single particles in a Penning trap, the proton/antiproton g-factors, i.e. the magnetic moment in units of the nuclear magneton, are determined by measuring the respective ratio of the spin-precession frequency to the cyclotron frequency. The spin precession frequency is measured by non-destructive detection of spin quantum transitions using the continuous Stern-Gerlach effect, and the cyclotron frequency is determined from the particle's motional eigenfrequencies in the Penning trap using the invariance theorem. By application of the double Penningtrap method we expect that in our measurements a fractional precision of δg/g 10
The β-asymmetry parameter A for the Gamow-Teller decay of 60 Co was measured by polarizing the radioactive nuclei with the brute force low-temperature nuclear-orientation method. The 60 Co activity was cooled down to milliKelvin temperatures in a 3 He-4 He dilution refrigerator in an external 13 T magnetic field. The β particles were observed by a 500 µm thick Si PIN diode operating at a temperature of about 10 K in a magnetic field of 0.6 T. Extensive GEANT4 Monte-Carlo simulations were performed to gain control over the systematic effects. Our result, A = −1.014 (12)stat (16)syst, is in agreement with the Standard-Model value of −0.987(9), which includes recoil-order corrections that were addressed for the first time for this isotope. Further, it enables limits to be placed on possible tensor-type charged weak currents as well as other physics beyond the Standard Model.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.