Nonstructural proteins of hepatitis C virus had drawn much attention for the scientific fraternity in drug discovery due to its important role in the disease. 3D structure of the protein was predicted using molecular modelling protocol. Docking studies of 10 medicinal plant compounds and three drugs available in the market (control) with NS2 protease were employed by using rigid docking approach of AutoDock 4.2. Among the molecules tested for docking study, naringenin and quercetin revealed minimum binding energy of - 7.97 and - 7.95 kcal/mol with NS2 protease. All the ligands were docked deeply within the binding pocket region of the protein. The docking study results showed that these compounds are potential inhibitors of the target; and also all these docked compounds have good inhibition constant, vdW+Hbond+desolv energy with best RMSD value.
Mycoplasma pneumoniae is a substantial respiratory pathogen that develops not only pneumonia but also other respiratory diseases, which mimic viral respiratory syndromes. Nevertheless, vaccine development for this pathogen delays behind as immunity correlated with protection is now predominantly unknown. In the present study, an immunoinformatics pipeline is utilized for epitope-based peptide vaccine design, which can trigger a critical immune response against M. pneumoniae. A total of 105 T-cell epitopes from 12 membrane associated proteins and 7 T-cell epitopes from 5 cytadherence proteins of M. pneumoniae were obtained and validated. Thus, 18 peptides with 9-mer core sequence were identified as best T-cell epitopes by considering the number of residues with > 75% in favored region. Further, the crucial screening studies predicted three peptides with good binding affinity towards HLA molecules as best T-cell and B-cell epitopes. Based on this result, visualization, and dynamic simulation for the three epitopes (WIHGLILLF, VILLFLLLF, and LLAWMLVLF) were assessed. The predicted epitopes needs to be further validated for their adept use as vaccine. Collectively, the study opens up a new horizon with extensive therapeutic application against M. pneumoniae and its associated diseases.
Rheumatoid arthritis (RA) is a chronic, inflammatory, multi-systemic autoimmune disease unremitted by genetic and environmental factors. The factors are crucial but inadequate in the development of disease; however, these factors can be representative of potential therapeutic targets and response to clinical therapy. Insights into the contribution of genetic risk factors are currently in progress with studies querying the genetic variation, their role in gene expression of coding and non-coding genes and other mechanisms of disease. In this review, we describe the significance of genetic markers architecture of RA through genome-wide association studies and meta-analysis studies. Further, it also reveals the mechanism of disease pathogenesis investigated through the mutual findings of functional and genetic studies of individual RA-associated genes, which includes HLA-DRB1, HLA-DQB1, HLA-DPB1, PADI4, PTPN22, TRAF1-C5, STAT4 and C5orf30. However, the genetic background of RA remains to be clearly depicted. Prospective efforts of the post-genomic and functional genomic period can travel toward real possible assessment of the genetic effect on RA. The discovery of novel genes associated with the disease can be appropriate in identifying potential biomarkers, which could assist in early diagnosis and aggressive treatment.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.