The relationships between pipe breaks of service pipes and mains and several factors were examined. Historical pipe breaks, and water and soil temperatures were also modeled by an artificial neural network to predict pipe breaks for efficient management and maintenance of the pipe networks. It was observed that the breaks of pipes increased after the temperatures of water and soil crossed in spring and fall. The pipe breaks were closely related to water and soil temperature, especially mains were affected more than service pipes. The fittings and valves were susceptible to the temperatures and needed to take measures for preventing breaks. The prediction of the pipe breaks by the ANN model built had a good performance except that the sensitivity was not good when the pipe breaks rapidly increased or decreased. The ANN model gave a good performance and was to be useful to predict the patterns of pipe breaks on a seasonal basis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.