Host status of four leguminous cover crops [Canavalia ensiformis (L.) DC. (Jack bean), Crotalaria ochroleuca G. Don (Sunnhemp), Lablab purpureus L. (Hyacinth bean) and Mucuna pruriens (L.) DC. (velvet bean)] to Pratylenchus zeae Filipjev and effects of intercropping C. ensiformis and M.pruriens with Pan5195, H627 and Emap11 maize cultivars on P. zeae population and disease severity on maize were determined in greenhouse and field tests. Pratylenchus zeae significantly (P < 0.05) reduced growth of C. ochroleuca by 36% but had no effect on C. ensiformis, M. pruriens and L. purpureus. While C. ensiformis, M. pruriens and L. purpureus reduced P. zeae population, C. ochroleuca increased it. In the greenhouse test, intercropping maize with C. ensiformis significantly (P < 0.05) improved maize growth by up to 34%, Nematode populations in the roots of maize intercropped with either C. ensiformis or M. pruriens were significantly (P < 0.05) reduced by up to 32% while nematode disease severity in these intercropping systems was reduced by up to 26%. In the field test, intercropping Emap11, Pan5195 and H627 with C. ensiformis significantly (P < 0.05) increased maize grain yield by 190, 29 and 22%, respectively. Intercropping H627 with M. pruriens significantly (P < 0.05) increased maize grain yield by 12%, but grain yields of Pan5195 and Emap11 declined by 79 and 40%, respectively. Root necrosis and soil nematode populations in the C. ensiformis-maize intercrop declined by up to 50 and 30%, respectively. Under pure maize stands, soil nematode populations increased by up to 35% in 90 days relative to the initial nematode population of three nematodes g )1 of fresh soil.
Surveys for Armillaria root disease severity were conducted over a 5-year period in small tea farms (0.5 to 1.0 ha) in the 12 tea-growing districts of Kenya. The disease occurred in all tea districts, but severity was greater in the districts east of the Rift Valley. Disease severity was associated with relative amounts of residual woody debris, especially roots, from trees and shrubs present when the land was converted to tea plantations. Excavation of tea bushes in disease centers showed that infection of tea bushes occurred primarily by mycelial growth from residual tree roots and from infected tea roots rather than from rhizomorphs. Rhizomorphs were scarce, and rarely involved in infection. They were confined mostly to the surface of the residual tree roots and were found growing freely in the soil in only one tea district. Rhizomorphs were more abundant in higher elevation plantations than in lower elevation plantations, where they occurred only on residual tree roots in the deeper, cooler, moister levels of the soil. Inoculum from residual tree debris in the soil was the most important source of infection in plantations of seed origin. Secondary spread from infected tea plants to healthy ones was limited and disease centers were small. In tea plantations derived from clonal cuttings, secondary disease spread from infected to healthy tea plants was more important resulting in large disease centers or gaps due to plant death and removal. Currently, soil sanitation by thorough removal of roots of forest trees and prompt removal of infected tea bushes is the best available management practice.
Two arbuscular mycorrhiza fungi (AMF) isolated from a pyrethrum-growing region in Kenya were screened for efficacy against a nematode, Meloidogyne hapla, in greenhouses. The fungi were identified at INVAM (International Culture Collection of Vesicular Arbuscular Mycorrhizal Fungi) as Glomus etunicatum (Isolate KS18) and Glomus sp. (Isolate KS14). Isolate KS14 (Glomus sp.) significantly suppressed nematode population, growth and development by up to 54%, egg production by up to 75% and disease severity by up to 71%. Glomus etunicatum (Isolate KS18) suppressed nematode growth and development by up to 50%, egg production by up to 75% and disease severity by up to 57%. In addition, G. etunicatum and Isolate KS14, significantly improved top dry biomass of pyrethrum by up to 33% and 47%, respectively. Glomus etunicatum and M. hapla were mutually inhibitory as root colonization by G. etunicatum was significantly reduced (up to 24%) by the presence of the nematode. The presence of the nematodes, on the other hand, did not significantly affect root colonization by Isolate KS14.
Five arbuscular mycorrhiza fungi (AMF) isolated from pyrethrum were screened in the greenhouse for efficacy in improving pyrethrum growth and in suppressing a root-knot nematode, Meloidogyne hapla. The fungi screened were Glomus spp. (isolates LM61, ML34 and ML35), Scutellospora sp. (isolate KS74) and Gigaspora sp. (isolate LM83). A 20g mixed fungal inoculum was incorporated into sterilized sand-soil mixture before transplanting 6-week-old pyrethrum seedlings. The inoculum consisted of the growth medium, spores, external mycelia and infected root segments. The plants were inoculated with 6000 M. hapla second stage juvenile (J-2) 3 months after fungal inoculation. Dry shoot weights, fresh root weights, percent root colonization by the fungi, nematode gall indices, number of eggs and females in the root system and number of J-2 in the soil were determined at the end of the experiment, two months after nematode inoculation. Glomus LM61 and Scutellospora KS74 significantly improved top biomasses of fungus-treated and fungus-nematodetreated plants. Glomus LM61was more effective (33% top biomass increase). Glomus ML34 and ML35 and Gigaspora LM83 improved top biomasses of fungus-nematode-treated plants. Scutellospora KS74 and Glomus ML34 significantly increased fresh root weights of pyrethrum by 45% and 50%, respectively. Glomus LM61, Scutellospora KS74 and Gigaspora LM83 caused 86%, 32% and 37% nematode suppression, respectively. All the fungal isolates significantly reduced the number of females and J-2. The presence of nematodes in fungus-treated plants did not affect root colonization by the fungi except in plants treated with Glomus ML34 and ML35.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.