High-voltage wide bandgap thin-film Si n-i-p solar cells have been made using the hot-wire chemical vapor deposition (HWCVD) technique. The best open-circuit voltage (Voc) has exceeded 0.94 V in solar cells using HWCVD in the entire n-i-p structure. A Voc of 0.97V has been achieved using HWCVD in the n and i layers and plasma-enhanced (PE) CVD for the p layer. The high voltages are attributed to the wide-gap i layer and an improved p/i interface. The wide-gap i layer is obtained by using low substrate temperatures and sufficient hydrogen dilution during the growth of the i layer to arrive at the amorphous-to-microcrystalline phase transition region. The optical band gap (E04) of the i layer is found to be 1.90 eV. These high-voltage cells also exhibit good fill factors exceeding 0.7 with short-circuit-current densities of 8 to 10 mA/cm 2 on bare stainless steel substrates. We have also carried out photoluminescence (PL) spectroscopy studies and found a correlation between Voc and the PL peak energy position.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.