Transformation with the Arabidopsis bHLH gene 35S:GLABRA3 (GL3) produced novel B. napus plants with an extremely dense coverage of trichomes on seedling tissues (stems and young leaves). In contrast, trichomes were strongly induced in seedling stems and moderately induced in leaves of a hairy, purple phenotype transformed with a 2.2 kb allele of the maize anthocyanin regulator LEAF COLOUR (Lc), but only weakly induced by BOOSTER (B-Peru), the maize Lc 2.4 kb allele, or the Arabidopsis trichome MYB gene GLABRA1 (GL1). B. napus plants containing only the GL3 transgene had a greater proportion of trichomes on the adaxial leaf surface, whereas all other plant types had a greater proportion on the abaxial surface. Progeny of crosses between GL3 + and GL1 + plants resulted in trichome densities intermediate between a single-insertion GL3 + plant and a double-insertion GL3 + plant. None of the transformations stimulated trichomes on Brassica cotyledons or on non-seedling tissues. A small portion of bHLH geneinduced trichomes had a swollen terminal structure. The results suggest that trichome development in B. napus may be regulated differently from Arabidopsis. They also imply that insertion of GL3 into Brassica species under a tissue-specific promoter has strong potential for developing insect-resistant crop plants.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.