Toll-like receptor 2 (TLR2) activation induces cellular and organ inflammation, and affects lung function. Since deranged endothelial function and coagulation pathways contribute to sepsis-induced organ failure, we studied the effects of bacterial lipoprotein TLR2 agonists, including peptidoglycan-associated lipoprotein, Pam3Cys, and murein lipoprotein, on endothelial function and coagulation pathways in vitro and in vivo. TLR2 agonist treatment induced diverse human endothelial cells (EC) to produce IL-6 and IL-8, and to express E-selectin on their surface, including human umbilical vein EC (HUVEC), human lung microvascular EC, and human coronary artery EC. Treatment of HUVEC with TLR2 agonists caused increased monolayer permeability and had multiple coagulation effects, including increased production of plasminogen-activator inhibitor 1 (PAI-1) and tissue factor, and decreased production of tissue plasminogen activator (tPA) and tissue factor pathway inhibitor. TLR2 agonist treatment also increased HUVEC expression of TLR2 itself. PAL induced IL-6 production by EC from wild-type, but not from TLR2 knockout mice, indicating TLR2 specificity. Mice were challenged with TLR2 agonists, and lungs and plasmas were assessed for markers of leukocyte trafficking and coagulopathy. Wild-type mice, but not TLR2 mice, that were challenged intravenously with TLR2 agonists had increased lung levels of myeloperoxidase and mRNAs for E-selectin, P-selectin, and MCP-1, and had increased plasma PAI-1 and E-selectin levels. Intratracheally administered TLR2 agonist caused increased lung fibrin levels. These studies show that TLR2 activation by bacterial lipoproteins broadly affects endothelial function and coagulation pathways, suggesting that TLR2 activation contributes in multiple ways to endothelial activation, coagulopathy, and vascular leakage in sepsis.
The uptake of (±)‐[3H]noradrenaline from an aqueous phase to an ether phase containing dissolved lecithin has been measured. No differences between the behaviour of (+)‐ or (—)‐noradrenaline in this system could be detected. The biological implications of this finding are discussed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.