Beach response to sea level rise is investigated experimentally with monochromatic and random waves in medium scale laboratory wave flumes. Beach profile development from initially planar profiles, and a 2/3 power law profile, exposed to wave conditions that formed barred or bermed profiles and subsequent profile development following rises in water level and the same wave conditions are presented. Experiments assess profile response to a step-change in water level as well as the influence of sediment deposition above the still water level (e.g. overwash). A continuity based profile translation model (PTM) is applied to both idealised and measured shoreface profiles, and is used to predict overwash and deposition volumes above the shoreline. Quantitative agreement with the Bruun Rule (and variants of it) is found for measured shoreline recession for both barred and bermed beach profiles. There is some variability between the profiles at equilibrium at the two different water levels. Under these idealised conditions, deviations between the original Bruun Rule, the modification by Rosati et al. (2013) and the PTM model predictions are of the order of 15% and all these model predictions are within ±30% of the observed shoreline recession. Measurements of the recession of individual contour responses, such as the shoreline, may be subject to local profile variability; therefore, a measure of the 2 mean recession of the profile is also obtained by averaging the recession of discrete contours throughout the active profile. The mean recession only requires conservation of volume, not conservation of profile shape, to be consistent with the Bruun Rule concept, and is found to be in better agreement with all three model predictions than the recession measured at the shoreline.
Global climate change can significantly influence oceanic phytoplankton dynamics, and thus biogeochemical cycles and marine food webs. However, associative explanations based on the correlation between chlorophyll-a concentration (Chl-a) and climatic indices is inadequate to describe the mechanism of the connection between climate change, large-scale atmospheric dynamics, and phytoplankton variability. Here, by analyzing multiple satellite observations of Chl-a and atmospheric conditions from National Center for Environmental Prediction/National Center for Atmospheric Research reanalysis datasets, we show that high-latitude atmospheric blocking events over Alaska are the primary drivers of the recent decline of Chl-a in the eastern North Pacific transition zone. These blocking events were associated with the persistence of large-scale atmosphere pressure fields that decreased westerly winds and southward Ekman transport over the subarctic ocean gyre. Reduced southward Ekman transport leads to reductions in nutrient availability to phytoplankton in the transition zone. The findings describe a previously unidentified climatic factor that contributed to the recent decline of phytoplankton in this region and propose a mechanism of the top-down teleconnection between the high-latitude atmospheric circulation anomalies and the subtropical oceanic primary productivity.The results also highlight the importance of understanding teleconnection among atmosphere-ocean interactions as a means to anticipate future climate change impacts on oceanic primary production.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.