Air traffic systems are of great significance to our society. However, air traffic systems are extremely complicated since an air traffic system encompasses many components which could evolve over time. It is therefore challenging to analyze the evolution dynamics of air traffic systems. In this paper we propose a graph perspective to trace the spatial-temporal evolutions of air traffic systems. Different to existing studies which are model-driven and only focus on certain properties of an air traffic system, in this paper we propose a data-driven perspective and analyze a couple of properties of an air traffic system. Specifically, we model air traffic systems with both unweighted and weighted graphs with respect to real-world traffic data. We then analyze the evolution dynamics of the constructed graphs in terms of nodal degrees, degree distributions, traffic delays, causality between graph structures and traffic delays, and system resilience under airport failures. To validate the effectiveness of the proposed approach, a case study on the American air traffic systems with respect to 12-month traffic data is carried out. It is found that the structures and traffic mobilities of the American air traffic systems do not evolve significantly over time, which leads to the stable distributions of the traffic delays as evidenced by a causality analysis. It is further found that the American
Compressive sensing (CS) technology is introduced into space optical remote sensing image acquisition stage, which could make wireless image sensor network node quickly and accurately obtain images in the case of two constraints of limited battery power and expensive sensor costs. On this basis, in order to further improve the quality of CS image reconstruction, we propose fused features and perceptual loss encoder-decoder residual network (FFPL-EDRNet) for image reconstruction. FFPL-EDRNet consists of a convolution layer and a reconstruction network. We train FFPL-EDRNet end-to-end, thus greatly simplifying the pre-processing and post-processing process and eliminating the block effect of reconstructed images. The reconstruction network is based on residual network, which introduces multiscale feature extraction, multi-scale feature combination and multi-level feature combination. Feature fusion integrates low-level information with high-level information to reduce reconstruction error. The perceptual loss function based on pretrained InceptionV3 uses the weighted mean square error to define the loss value between the reconstructed image feature and the label image feature, which makes the reconstructed image more semantically similar to label image. In the measurement procedure, we use convolution to achieve block compression measurement, so as to obtain full image measurements. For image reconstruction, we firstly use a deconvolution layer to initially reconstruct the image and then use the residual network to refine the initial reconstructed image. The experimental results show that: in the case of measurement rates (MRs) of 0.25, 0.10, 0.04 and 0.01, the peak signal-to-noise ratio (PSNR) = 27.502, 26.804, 24.593, 21.359 and structural similarity (SSIM) = 0.842, 0.816, 0.720, 0.568 of the reconstructed images obtained by FFPL-EDRNet. Therefore, Our FFPL-EDRNet could enhance the quality of image reconstruction.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.