The effect of the shear deformation and the superimposed hydrostatic pressure on the formability of magnesium alloy sheet is simulated in terms of the forming limit diagram (FLD). The model employed is the elastic viscoplastic selfconsistent (EVPSC) crystal plasticity model, which accounts for both slip and twinning systems as the deformation mechanisms. The conventional sheets have low formability at room temperature due to the strong basal texture developed by the rolling process. However differential speed rolling process develops relatively weak basal texture by introducing shear deformation. Therefore the formability of the sheets produced by differential speed rolling is enhanced. In terms of the superimposed hydrostatic pressure, it delays the onset of necking and therefore improves the formability of sheets. In addition, the effect of crystal elasticity on the formability of sheets is numerically studied.
The cyclic deformation behavior of extruded .%Al alloy with a conventional extrusion texture and a modified texture is systematically investigated by in-situ neutron diffraction and elastic viscoplastic self-consistent (EVPSC) modeling incorporating a twinning/de-twinning (TDT) scheme. The role of twinning and de-twinning on the deformation behavior of Mg-8.5wt.% Al alloy is investigated in terms of the macroscopic stress-strain response, the evolution of the activities of various deformation mechanisms, the texture evolution, the evolution of the internal elastic strains, and the evolution of the diffraction peak intensities. The alloy with the conventional extrusion texture undergoes twinning during initial compression and de-twinning during reverse tension. The same alloy does not favor twinning during initial tension, but rather during reverse compression. The alloy with a modified texture undergoes twinning during initial tension followed by detwinning during reverse compression. The results provide insights into the effect of initial texture, loading path, slip, twinning, de-twinning on the cyclic behavior of magnesium.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.