1. The effects of substrate concentration and enzyme source (human liver microsomes and recombinant cytochrome P450s, CYP) on the activation of 7-benzyloxyresorufin O-debenzylation and nifedipine oxidation were investigated. 2. 7-Benzyloxyresorufin O-debenzylase activity in human liver microsomes was inhibited by a monoclonal antibody against CYP2B6 and a polyclonal antibody against CYP3A2 by 53-69 and 19-44%, respectively, suggesting that CYP2B6 and CYP3A4 mainly catalyse 7-benzyloxyresorufin O-debenzylation in human liver microsomes. 3. 7-Benzyloxyresorufin O-debenzylase activity at 0.2-5 micro M substrate concentrations in human liver microsomes was increased by the addition of alpha-naphthoflavone, quinidine, testosterone and progesterone, and the V(max) of 7-benzyloxyresorufin O-debenzylation increased with increasing alpha-naphthoflavone concentrations, whereas the K(m) remained constant. Additionally, 7-benzyloxyresorufin O-debenzylation by recombinant CYP3A4 was increased by the addition of alpha-naphthoflavone, testosterone and progesterone but not by quinidine, whereas no chemicals tested could activate the O-debenzylation of 7-benzyloxyresorufin by CYP2B6. 4. The K(m) for nifedipine oxidation activity by CYP3A4 decreased by the addition of progesterone, whereas the V(max) remained constant. Quinidine and testosterone increased 7-benzyloxyresorufin O-debenzylase and nifedipine oxidase activities, respectively, in human liver microsomes, whereas activation was not observed in CYP3A4. 5. The results suggest that in vitro activation patterns are substrate dependent and that selection of the enzyme source can influence the activation phenomenon.
1. Cytochrome P450 (P450, CYP) enzymes involved in drug oxidations in mouse intestines were characterized for their role in the first-pass metabolism of xenobiotics. 2. Preparation of mouse intestinal microsomes using a buffer containing glycerol and protease inhibitors including (p-amidinophenyl) methanesulphonyl fluoride, EDTA, soybean trypsin inhibitor, aprotinin, bestatin and leupeptine gave the highest testosterone 6beta-hydroxylase activity among several preparation buffers tested in this study. Testosterone 6beta-hydroxylase activity catalysed by mouse intestinal microsomes subjected to freezing and thawing was lower than that catalysed by unfrozen intestinal microsomes. 3. Low but significant catalytic activities of nifedipine oxidation, midazolam 1'- and 4-hydroxylation, chlorzoxazone 6-hydroxylation, bufuralol 1'- and 6-hydroxylations and tolbutamide methylhydroxylation were observed in mouse intestinal microsomes. Testosterone 6beta-hydroxylation, chlorzoxazone 6-hydroxylation, and bufuralol 1'- and 6-hydroxylations were inhibited by ketoconazole, diethyldithiocarbamate and quinine respectively. 4. Immunoblot analysis using anti-rat CYP3A antibodies demonstrated two immunoreactive bands showing similar migration in mouse intestinal and hepatic microsomes, although studies using anti-CYP1A, anti-CYP2C, anti-CYP2D and anti-CYP2E1 antibodies did not detect any band in mouse intestinal microsomes. 5. The results suggest that mouse intestinal microsomes should be prepared with glycerol and several protease inhibitors and that Cyp3a enzymes probably play an important role in drug oxidations catalysed by mouse intestine.
1. The use of everted sacs of the small intestine as an enzyme source for the study of the first-pass metabolism of xenobiotics by cytochrome P450s (P450, CYP) is described. Several drug oxidation activities for testosterone, chlorzoxazone, tolbutamide, bufuralol and warfarin were observed when everted sacs (1-cm segment) from different parts of mouse small intestine were incubated with an NADPH-generating system and each substrate. 2. Most of the drug hydroxylase activities resided in the upper part of mouse small intestine and these activities were much higher than those of intestinal microsomes. Drug oxidation activities decreased along the distance from the upper part of the small intestine except for warfarin hydroxylation. 3. Testosterone 6beta-hydroxylation in the everted sacs exhibited the highest catalytic activities among the drug oxidations tested here. In the upper part of the small intestine, the testosterone 6beta-hydroxylase activities of everted sacs subjected once to freezing and thawing were substantially decreased compared with the untreated everted sacs. 4. Testosterone 6beta-hydroxylase activities in the everted sacs of the small intestine were significantly inhibited by ketoconazole. Immunoreactive proteins using anti-CYP3A antibodies were detected in the upper and middle parts of the small intestine. 5. The results demonstrated that the upper part of the mouse small intestine serves as the major site for intestinal P450 mediated first-pass metabolism. Everted sacs of the small intestine are therefore useful for the study of drug metabolism as well as of transport and absorption.
1. The effects of several CYP3A substrates (alpha-naphthoflavone (alphaNF), terfenadine, midazolam, erythromycin) on nifedipine oxidation and testosterone 6beta-hydroxylation activities were investigated in hepatic and intestinal microsomes from mouse and human. 2. alphaNF (10 microM) and terfenadine (100 microM) inhibited nifedipine oxidation activities (at substrate concentration of 100 microM) in mouse hepatic microsomes to approximately 50%, but not in mouse intestinal microsomes. alphaNF (30 microM) stimulated nifedipine oxidation activities in mouse and human intestinal microsomes and in human hepatic microsomes to approximately 1.3-1.8-fold. Inhibitory potencies (50% inhibition concentration, IC50) of midazolam and erythromycin for nifedipine oxidations were calculated to be approximately 90 microM in human intestinal microsomes. In contrast, testosterone (100 microM) stimulated the nifedipine oxidation activities approximately 1.5-fold in hepatic and intestinal microsomes from mouse and human. 3. alphaNF showed different effects on the kinetic parameters including the Hill coefficients of nifedipine oxidation and testosterone 6beta-hydroxylation catalysed by hepatic and intestinal microsomes from mouse and human. Cooperativity in nifedipine oxidation was increased by the addition of alphaNF to pooled human hepatic microsomes, but little effects of alphaNF could be observed in individual human intestinal microsomes. 4. These results suggest that CYP3A enzymes in liver and intestine might have different characteristics and that observations from hepatic microsomes should not be directly applicable to intestine metabolism in some cases. Studies of drug-drug interactions of CYP3A substrates are recommended to be performed using intestinal samples.
Photosensitized cycloaddition of 4,6‐dimethyl‐2‐pyrone (1) with methacrylonitrile (3b) afforded two types of [2 + 2]cycloadducts, 4b and 6b, across the C5‐C6 and C3‐C4 double bonds in 1, respectively. Photosensitized reactions of 1 with dimethyl maleate and dimethyl cyclobutene‐1,2‐dicarboxylate gave [2 + 2]cycload‐ducts 4d, 4e across the C5‐C6 double bond, in addition to [4 + 2]cycloadduct 9d or bicyclo[4.2.0]octadiene 10e. The photoreactions of methyl 2‐pyrone‐5‐carboxylate (2) with 3b and 2‐chloroacrylonitrile (3c) gave [4 + 2]cycloadducts 5b, 5c in addition to [2 + 2]cycloadducts 11b and 11c across the C5‐C6 double bond in 2. The photocycloaddition mechanism was explained from results calculated by means of PM3‐CI method. Namely, the site‐ and/or regio‐selective products, 4, 5, 8, 9 and 10 were thought to come from the same site‐selective radical intermediates in the case of electron‐poor olefins. Pyrolysis and/or hydrolysis of the cycload‐ducts 4e, 5b, 5c gave 5,6‐dihydro‐2‐pyrone 12 or benzene derivatives.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.