Background: The majority of miscarriages are sporadic; however, 1-5% of couples experience recurrent pregnancy loss (RPL). Approximately 50-60% of miscarriages result from chromosomal abnormalities. Currently, there are conflicting reports regarding the rates of chromosomal abnormalities between recurrent and sporadic pregnancy losses. Methods: A retrospective comparative cytogenetic analysis of 442 RPL and 466 sporadic abortions (SA) was performed. Maternal age and medical background were evaluated, and chromosomal abnormality rates were compared between groups. Results: The frequency of embryos with abnormal karyotypes was significantly higher in SA compared to RPL (56.7 and 46.6%, respectively), and abortions from women under 30 years of age were the main contributor to this difference. An age-dependent increase in the abnormal karyotype rate was observed in two groups of women - those with SA [53.0 and 70.1% for younger and older (≥35-year-old) mothers, respectively] and those with idiopathic RPL without any concomitant reproductive pathology (46.5 and 78.4% for younger and older mothers) - but not in the group of women with RPL associated with concomitant reproductive pathology. The incidence of recurrent abnormal karyotypes in subsequent miscarriages was significantly higher than random probability (odds ratio = 22.75). Conclusion: Our findings highlight the variability in the risk of aneuploidy in recurrent abortion.
Skewed X-chromosome inactivation (sXCI) can be a marker of lethal genetic variants on the X chromosome in a woman since sXCI modifies the pathological phenotype. The aim of this study was to search for CNVs in women with miscarriages and sXCI. XCI was assayed using the classical method based on the amplification of highly polymorphic exon 1 of the androgen receptor (<i>AR</i>) gene. The XCI status was analysed in 313 women with pregnancy loss and in 87 spontaneously aborted embryos with 46,XX karyotype, as well as in control groups of 135 women without pregnancy loss and 64 embryos with 46,XX karyotype from induced abortions in women who terminated a normal pregnancy. The frequency of sXCI differed significantly between women with miscarriages and women without pregnancy losses (6.3% and 2.2%, respectively; <i>p</i> = 0.019). To exclude primary causes of sXCI, sequencing of the <i>XIST</i> and <i>XACT</i> genes was performed. The <i>XIST</i> and <i>XACT</i> gene sequencing revealed no known pathogenic variants that could lead to sXCI. Molecular karyotyping was performed using aCGH, followed by verification of X-linked CNVs by RT-PCR and MLPA. Microdeletions at Xp11.23 and Xq24 as well as gains of Xq28 were detected in women with sXCI and pregnancy loss.
The placenta has a unique hypomethylated genome. Due to this feature of the placenta, there is a potential possibility of using regulatory elements derived from retroviruses and retrotransposons, which are suppressed by DNA methylation in the adult body. In addition, there is an abnormal increase in the level of methylation of the LINE-1 retrotransposon in the chorionic trophoblast in spontaneous abortions with both normal karyotype and aneuploidy on different chromosomes, which may be associated with impaired gene transcription using LINE-1 regulatory elements. To date, 988 genes that can be expressed from alternative LINE-1 promoters have been identified. Using the STRING tool, genes (NUP153 and YWHAB) were selected, the products of which have significant functional relationships with proteins highly expressed in the placenta and involved in trophoblast differentiation. This study aimed to analyze the expression of the NUP153 and YWHAB genes, highly active in the placenta, from canonical and alternative LINE-1 promoters in the germinal part of the placenta of spontaneous and induced abortions. Gene expression analysis was performed using real-time PCR in chorionic villi and extraembryonic mesoderm of induced abortions (n = 10), adult lymphocytes (n = 10), spontaneous abortions with normal karyotype (n = 10), and with the most frequent aneuploidies in the first trimester of pregnancy (trisomy 16 (n = 8) and monosomy X (n = 6)). The LINE-1 methylation index was assessed in the chorionic villi of spontaneous abortions using targeted bisulfite massive parallel sequencing. The level of expression of both genes from canonical promoters was higher in blood lymphocytes than in placental tissues (p < 0.05). However, the expression level of the NUP153 gene from the alternative LINE-1 promoter was 17 times higher in chorionic villi and 23 times higher in extraembryonic mesoderm than in lymphocytes (p < 0.05). The expression level of NUP153 and YWHAB from canonical promoters was higher in the group of spontaneous abortions with monosomy X compared to all other groups (p < 0.05). The LINE-1 methylation index negatively correlated with the level of gene expression from both canonical (NUP153 – R = –0.59, YWHAB – R = –0.52, p < 0.05) and alternative LINE-1 promoters (NUP153 – R = –0.46, YWHAB – R = –0.66, p < 0.05). Thus, the observed increase in the LINE-1 methylation index in the placenta of spontaneous abortions is associated with the level of expression of the NUP153 and YWHAB genes not only from alternative but also from canonical promoters, which can subsequently lead to negative consequences for normal embryogenesis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.