Статтю присвячено проблемі біологізації сільськогосподарського виробництва, зокрема питанням біологічного азоту, ролі мікроорганізмів у поповненні його запасів у ґрунті та підвищення продуктивності рослин завдяки використанню бактеріальних препаратів. Розглянуто внесок українських учених у вирішення цієї проблеми, зокрема, представлено розроблену ними екологічно чисту технологію отримання рослинного білка на основі використання симбіотичної взаємодії високоефективних мікроорганізмів із сучасними сортами бобових рослин. Доведено економічний ефект від впровадження вказаної технології у виробництво.
Lectins, in particular from plants, are proteins of non-immune origin that are able to bind carbohydrates with high specificity. Due to their properties, phytolectins are of great interest in practical applications. They were shown to play an important role in forming strategies for treatment of disease including cancer and HIV. Plant lectins are an important tool in glycomic studies. Plant lectins with fungicidal and insecticidal activities are used in transgenic technologies to increase plant resistance to pests and phytopathogens. The introduction of lectin-like kinases genes into plant genome was shown to be perspective way to protect plants against environmental stresses and regulate plant growth. Engineering of phytolectins allows obtaining molecules with known carbohydrate specificity that can be applied in various areas. The studies are underway with the aim of design of lectin-based drug delivery systems as well as the pharmaceutical drugs containing plant lectins. Because of the ability of phytolectins to bind to different substances they can be more widely used in the future. The review focuses on current data and future possibilities in the application of plant lectins
We studied the effect of complex seed treatment with fungicides and rhizobium culture on the activity of phenolic metabolism enzymes – polyphenol oxidase and guaiacol peroxidase in the early stages of the formation and functioning of various symbiotic systems Glycine max – Bradyrhizobium japonicum. In the research we used microbiological, physiological, biochemical methods, gas chromatography and spectrophotometry. The objects of the study were selected symbiotic systems formed with the participation of soybean (Glycine max (L.) Merr.), Diamond variety, strains Bradyrhizobium japonicum 634b (active, virulent) and 604k (inactive, highly virulent) and fungicides Maxim XL 035 PS (fludioxonil, 25 g/L, metalaxyl, 10 g/L), and Standak Top (fipronil, 250 g/L, thiophanate methyl, 225 g/L, piraclostrobin, 25 g/L). Before sowing, the seeds of soybean were treated with solutions of fungicides, calculated on the basis of one rate of expenditure of the active substance of each preparation indicated by the producer per ton of seed. One part of the seeds treated with fungicides was inoculated with rhizobium culture for 1 h (the titre of bacteria was 108 cells in 1 ml). The other part of the fungicide-treated seeds was not inoculated by rhizobium culture. As a result of the research, it was revealed that an effective symbiotic system formed with the participation of soybean plants and the active strain rhizobia 634b is characterized by a high level of polyphenol oxidase activity and low guaiacol peroxidase in roots and root nodules in the stages of second and third true leaves. Such changes in the activity of enzymes occurred along with the formation of nodules which actively fixed the molecular nitrogen of the atmosphere. An ineffective symbiotic system (strain 604k) is characterized by an elevated level of polyphenol oxidase activity in the roots and guaiacol peroxidase in the root nodules, which is accompanied by activation of the process of nodulation. Treatment of soybean seeds with fungicides in an effective symbiotic system leads to a change in the activity of the enzymes of the phenolic metabolism, which induced adaptive changes in plant metabolism and growth of nitrogenase activity of the root nodules. The recorded changes in the activity of both enzymes for the action of fungicides in the ineffective symbiotic system can be considered as a kind of response of the plant to the treatment and were observed along with the reduction of the processes of nodulation into the stage of the third true leaf.
The effect of pre-sowing treatment of soybean seeds with fungicides on the intensity of ethylene release, the processes of nodulation and nitrogen fixation in different symbiotic systems in the early stages of ontogenesis were investigated. The objects of the study were selected symbiotic systems formed with the participation of soybean (Glycine max (L.) Merr.) Diamond variety, strains Bradyrhizobium japonicum 634b (active, virulent) and 604k (inactive, highly virulent) and fungicides Maxim XL 035 PS (fludioxonil, 25 g/L, metalaxyl, 10 g/L), and Standak Top (fipronil, 250 g/L, thiophanate methyl, 225 g/L, piraclostrobin, 25 g/L). Before sowing, the seeds of soybean were treated with solutions of fungicides, calculated on the basis of one rate of expenditure of the active substance of each preparation indicated by the producer per ton of seed. One part of the seeds treated with fungicides was inoculated with rhizobium culture for 1 h (the titre of bacteria was 107 cells/mL). To conduct the research we used microbiological, physiological, biochemical methods, gas chromatography and spectrophotometry. It is found that, regardless of the effectiveness of soybean rhizobial symbiosis, the highest level of ethylene release by plants was observed in the stages of primordial leaf and first true leaf. This is due to the initial processes of nodulation – the laying of nodule primordia and the active formation of nodules on the roots of soybeans. The results show that with the participation of fungicides in different symbiotic systems, there are characteristic changes in phytohormone synthesis in the primordial leaf stage, when the nodule primordia are planted on the root system of plants. In particular, in the ineffective symbiotic system, the intensity of phytohormone release decreases, while in the effective symbiotic system it increases. At the same time, a decrease in the number of nodules on soybean roots inoculated with an inactive highly virulent rhizobia 604k strain due to the action of fungicides and an increase in their number in variants with co-treatment of fungicides and active virulent strain 634b into the stage of the second true leaf were revealed. It was shown that despite a decrease in the mass of root nodules, there is an increase in their nitrogen-fixing activity in an effective symbiotic system with the participation of fungicides in the stage of the second true leaf. The highest intensity of ethylene release in both symbiotic systems was recorded in the stage of the first true leaf, which decreased in the stage of the second true leaf and was independent of the nature of the action of the active substances of fungicides. The obtained data prove that the action of fungicides changes the synthesis of ethylene by soybean plants, as well as the processes of nodulation and nitrogen fixation, which depend on the efficiency of the formed soybean-rhizobial systems and their ability to realize their symbiotic potential under appropriate growing conditions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.