We studied the effect of complex seed treatment with fungicides and rhizobium culture on the activity of phenolic metabolism enzymes – polyphenol oxidase and guaiacol peroxidase in the early stages of the formation and functioning of various symbiotic systems Glycine max – Bradyrhizobium japonicum. In the research we used microbiological, physiological, biochemical methods, gas chromatography and spectrophotometry. The objects of the study were selected symbiotic systems formed with the participation of soybean (Glycine max (L.) Merr.), Diamond variety, strains Bradyrhizobium japonicum 634b (active, virulent) and 604k (inactive, highly virulent) and fungicides Maxim XL 035 PS (fludioxonil, 25 g/L, metalaxyl, 10 g/L), and Standak Top (fipronil, 250 g/L, thiophanate methyl, 225 g/L, piraclostrobin, 25 g/L). Before sowing, the seeds of soybean were treated with solutions of fungicides, calculated on the basis of one rate of expenditure of the active substance of each preparation indicated by the producer per ton of seed. One part of the seeds treated with fungicides was inoculated with rhizobium culture for 1 h (the titre of bacteria was 108 cells in 1 ml). The other part of the fungicide-treated seeds was not inoculated by rhizobium culture. As a result of the research, it was revealed that an effective symbiotic system formed with the participation of soybean plants and the active strain rhizobia 634b is characterized by a high level of polyphenol oxidase activity and low guaiacol peroxidase in roots and root nodules in the stages of second and third true leaves. Such changes in the activity of enzymes occurred along with the formation of nodules which actively fixed the molecular nitrogen of the atmosphere. An ineffective symbiotic system (strain 604k) is characterized by an elevated level of polyphenol oxidase activity in the roots and guaiacol peroxidase in the root nodules, which is accompanied by activation of the process of nodulation. Treatment of soybean seeds with fungicides in an effective symbiotic system leads to a change in the activity of the enzymes of the phenolic metabolism, which induced adaptive changes in plant metabolism and growth of nitrogenase activity of the root nodules. The recorded changes in the activity of both enzymes for the action of fungicides in the ineffective symbiotic system can be considered as a kind of response of the plant to the treatment and were observed along with the reduction of the processes of nodulation into the stage of the third true leaf.
The effect of pre-sowing treatment of soybean seeds with fungicides on the intensity of ethylene release, the processes of nodulation and nitrogen fixation in different symbiotic systems in the early stages of ontogenesis were investigated. The objects of the study were selected symbiotic systems formed with the participation of soybean (Glycine max (L.) Merr.) Diamond variety, strains Bradyrhizobium japonicum 634b (active, virulent) and 604k (inactive, highly virulent) and fungicides Maxim XL 035 PS (fludioxonil, 25 g/L, metalaxyl, 10 g/L), and Standak Top (fipronil, 250 g/L, thiophanate methyl, 225 g/L, piraclostrobin, 25 g/L). Before sowing, the seeds of soybean were treated with solutions of fungicides, calculated on the basis of one rate of expenditure of the active substance of each preparation indicated by the producer per ton of seed. One part of the seeds treated with fungicides was inoculated with rhizobium culture for 1 h (the titre of bacteria was 107 cells/mL). To conduct the research we used microbiological, physiological, biochemical methods, gas chromatography and spectrophotometry. It is found that, regardless of the effectiveness of soybean rhizobial symbiosis, the highest level of ethylene release by plants was observed in the stages of primordial leaf and first true leaf. This is due to the initial processes of nodulation – the laying of nodule primordia and the active formation of nodules on the roots of soybeans. The results show that with the participation of fungicides in different symbiotic systems, there are characteristic changes in phytohormone synthesis in the primordial leaf stage, when the nodule primordia are planted on the root system of plants. In particular, in the ineffective symbiotic system, the intensity of phytohormone release decreases, while in the effective symbiotic system it increases. At the same time, a decrease in the number of nodules on soybean roots inoculated with an inactive highly virulent rhizobia 604k strain due to the action of fungicides and an increase in their number in variants with co-treatment of fungicides and active virulent strain 634b into the stage of the second true leaf were revealed. It was shown that despite a decrease in the mass of root nodules, there is an increase in their nitrogen-fixing activity in an effective symbiotic system with the participation of fungicides in the stage of the second true leaf. The highest intensity of ethylene release in both symbiotic systems was recorded in the stage of the first true leaf, which decreased in the stage of the second true leaf and was independent of the nature of the action of the active substances of fungicides. The obtained data prove that the action of fungicides changes the synthesis of ethylene by soybean plants, as well as the processes of nodulation and nitrogen fixation, which depend on the efficiency of the formed soybean-rhizobial systems and their ability to realize their symbiotic potential under appropriate growing conditions.
The reaction of the soybean symbiotic apparatus inoculated with Bradyrhizobium japonicum strains and Tn5 mutants, which were different in efficiency, was studied for the loss of water content in leaves and roots induced by prolonged drought, as well as the seed productivity of the formed symbiotic systems. To conduct researches were used microbiological, physiological, biochemical methods, gas chromatography and spectrophotometry. The objects of the study were selected symbiotic systems formed with the participation of soybean plants and strains B. japonicum 646 (active, virulent) and 604k (inactive, highly virulent), as well as Tn5-mutants – B1-20 (active, virulent) and 107 (low-active, virulent) obtained by the method of transposon mutagenesis in the department of symbiotic nitrogen fixation at the Institute of Plant Physiology and Genetics of the National Academy of Sciences of Ukraine. Before sowing, sterilized with 70 % ethanol and washed under running water for 1 h, the seeds were inoculated with suspensions of nodules bacteria (the titre of the suspension was 108 cells in 1 ml). The combined model drought was created during 12 days by stopping watering of plants up to 40 % of full moisture content starting from the stage of two true leaves and gradual transfer of watering to 30 % of full moisture content in the stage of three true leaves and budding - the beginning of flowering. After the stopping of drought, the moisture content of the substrate was adjusted to 60 % of full moisture content (watering recovery) into the stage of mass flowering. Control plants were inoculated by rhizobium culture, as well as plants without inoculation, which grew for optimal watering. It was investigated that in symbiotic systems formed with the participation of soybean and the active strain B. japonicum (646) and Tn5-mutant (B1-20) there was no significant reduction in the water content of plants under drought conditions and the effective work of the symbiotic apparatus was recorded, which contributed to the preservation of seed productivity. Ineffective symbiotic systems observed significant losses in water content and inhibition of the process of nodulation (strain 604k) and nitrogen fixation (Tn5-mutants 107), which was accompanied by significant losses of soybean crop yields. As a result of the research, it was concluded that in soil-climatic conditions with insufficient rainfall and frequent droughts, effective symbiotic systems should be used, which will promote the optimal functioning of the symbiotic apparatus and preserve the seed productivity of soybeans by adaptive regulation of water balance and fixation of molecular nitrogen of the atmosphere. The study of the functioning of leguminous plants in symbiosis with strains of nodule bacteria is important for finding effective symbiotic systems that are able to realize their adaptive potential for the effects of stress factors, in particular drought. Effective symbiotic relationships are the main source of nitrogen fixation in terrestrial ecosystems, which will reduce the need to enrich the soil with chemical compounds and provide additional economic and environmental advantage.
Soybean is one of the most profitable advanced crops in agricultural production in Ukraine and the world as a whole. Therefore, studies of means of regulation and increase in the adaptive capacity of soybeans in symbiosis with nodule bacteria under the action of unfavourable environmental factors are relevant and should be aimed at the use of complex bacterial compositions involving modern nanotechnological approaches. Nanocarboxylates of ferrum, molybdenum and germanium metals were used as components of rhizobia inoculation suspension for soybean seed treatment to study the effectiveness of their complex effect on the regulation of the activity of the key antioxidant enzyme superoxide dismutase in plants under drought. Various symbiotic systems were used, which included soybean plants and inoculation suspensions based on the active, virulent Tn5-mutant Bradyrhizobium japonicum B1-20 by adding nanoparticles of ferrum, germanium and molybdenum carboxylates to the culture medium in a ratio of 1: 1000. Citric acid was the chelator. A model drought lasting 14 days was created during the period of active fixation of atmospheric molecular nitrogen by root nodules of soybeans in the budding and flowering stages, by means of controlled watering of plants to 30% of the total moisture content. In the stage of bean formation, watering of plants was resumed to the optimal level – 60% of the total moisture content. The control was soybean plants, the seeds of which were inoculated with a suspension of rhizobia without the addition of chelated metals. The following research methods were used in the work – microbiological, physiological and biochemical. According to the results, it was found that when nanoparticles of carboxylates of ferrum, molybdenum and germanium were added to the inoculation suspension of rhizobia, there was an increase in superoxide dismutase activity in root nodules and a decrease in soybean leaves under optimal water supply conditions of plants. This indicates the initial changes in the activity of the antioxidant enzyme in these symbiotic systems, induced by the influence of chelated metals in combination with the rhizobia of the active Tn5-mutant B. japonicum B1-20. Prolonged drought induced an increase in the overall level of superoxide dismutase activity in soybean nodules and leaves, compared to plants grown under optimal watering conditions. The symbiotic system formed by soybeans and B. japonicum with molybdenum carboxylate nanoparticles was the most sensitive to long-term drought exposure, compared to two other soybean-rhizobial symbioses using ferrum and germanium nanocarboxylates. This was manifested in the unstable reaction of the enzyme to the action of drought – suppression or intensification of the level of its activity in the root nodules and leaves of soybeans inoculated with rhizobia containing molybdenum carboxylate nanoparticles. In symbiotic systems with the participation of germanium and ferrum nanocarboxylates, slight changes were revealed in superoxide dismutase activity in root nodules and leaves of plants during drought and restoration of enzyme activity to the level of plants with optimal watering after water stress. It is concluded that the addition to the culture medium of rhizobia Tn5-mutant B1-20 of nanocarboxylates of germanium or ferrum is an effective means of regulating the activity of the antioxidant enzyme superoxide dismutase in soybean root nodules and leaves, which can contribute to an increase in the protective properties and adaptation of plants to the action of dehydration.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.