Excellent resistive switching memory characteristics were demonstrated for an Al/Cu/Ti/TaOx/W structure with a Ti nanolayer at the Cu/TaOx interface under low voltage operation of ± 1.5 V and a range of current compliances (CCs) from 0.1 to 500 μA. Oxygen accumulation at the Ti nanolayer and formation of a defective high-κ TaOx film were confirmed by high-resolution transmission electron microscopy, energy dispersive X-ray spectroscopy, and X-ray photo-electron spectroscopy. The resistive switching memory characteristics of the Al/Cu/Ti/TaOx/W structure, such as HRS/LRS (approximately 104), stable switching cycle stability (>106) and multi-level operation, were improved compared with those of Al/Cu/TaOx/W devices. These results were attributed to the control of Cu migration/dissolution by the insertion of a Ti nanolayer at the Cu/TaOx interface. In contrast, CuOx formation at the Cu/TaOx interface was observed in an Al/Cu/TaOx/W structure, which hindered dissolution of the Cu filament and resulted in a small resistance ratio of approximately 10 at a CC of 500 μA. A high charge-trapping density of 6.9 × 1016 /cm2 was observed in the Al/Cu/Ti/TaOx/W structure from capacitance-voltage hysteresis characteristics, indicating the migration of Cu ions through defect sites. The switching mechanism was successfully explained for structures with and without the Ti nanolayer. By using a new approach, the nanoscale diameter of Cu filament decreased from 10.4 to 0.17 nm as the CC decreased from 500 to 0.1 μA, resulting in a large memory size of 7.6 T to 28 Pbit/sq in. Extrapolated 10-year data retention of the Ti nanolayer device was also obtained. The findings of this study will not only improve resistive switching memory performance but also aid future design of nanoscale nonvolatile memory.
The performances of conductive-bridging random access memory (CBRAM) have been reviewed for different switching materials such as chalcogenides, oxides, and bilayers in different structures. The structure consists of an inert electrode and one oxidized electrode of copper (Cu) or silver (Ag). The switching mechanism is the formation/dissolution of a metallic filament in the switching materials under external bias. However, the growth dynamics of the metallic filament in different switching materials are still debated. All CBRAM devices are switching under an operation current of 0.1 μA to 1 mA, and an operation voltage of ±2 V is also needed. The device can reach a low current of 5 pA; however, current compliance-dependent reliability is a challenging issue. Although a chalcogenide-based material has opportunity to have better endurance as compared to an oxide-based material, data retention and integration with the complementary metal-oxide-semiconductor (CMOS) process are also issues. Devices with bilayer switching materials show better resistive switching characteristics as compared to those with a single switching layer, especially a program/erase endurance of >105 cycles with a high speed of few nanoseconds. Multi-level cell operation is possible, but the stability of the high resistance state is also an important reliability concern. These devices show a good data retention of >105 s at >85°C. However, more study is needed to achieve a 10-year guarantee of data retention for non-volatile memory application. The crossbar memory is benefited for high density with low power operation. Some CBRAM devices as a chip have been reported for proto-typical production. This review shows that operation current should be optimized for few microamperes with a maintaining speed of few nanoseconds, which will have challenges and also opportunities for three-dimensional (3D) architecture.
The impact of a TaOx nanolayer at the GeSex/W interface on the performance of resistive switching memory in an Al/Cu/GeSex/TaOx/W structure has been examined. All materials and the memory structure have been investigated using high-resolution transmission electron microscopy, energy dispersive x ray spectroscopy, and x ray photo-electron spectroscopy analyses. A conically shaped crystalline Cu (111) nanofilament with a diameter of around 17 nm in the TaOx nanolayer after a current compliance (CC) of 500 μA has been observed, and this has been also characterized by fast Fourier transform. The low resistance state (LRS) decreases as the current compliances (CCs) increased from 1 nA to 1 mA, since the nanofilament diameter increased from 0.04 to 23.4 nm. This is also estimated by bipolar resistive switching characteristics. The resistivity of this crystalline Cu nanofilament is approximately 2300 μΩ.cm. The nanofilament has a cylindrical shape, with CCs ranging from 1 nA to 10 μA and a conical shape with CCs ranging from 50 μA-1 mA. The resistive switching mechanism has been explained successfully under SET and RESET operations. Improved resistive switching parameters, such as SET voltage, LRS, and high resistance state with consecutive switching cycles are obtained and compared to those of pure GeSex and TaOx materials. Extrapolated, long program/erase endurance of > 106 cycles, attributed to the Al/Cu/GeSex/TaOx/W structure design, is observed. This resistive switching memory structure shows extrapolated 10 years data retention with a resistance ratio of > 10 at a low CC of 0.1 μA at 50 °C. A large memory size of ∼ 6 Pbit/sq. in. is obtained, considering the nanofilament diameter at a low CC of 0.1 μA. This study is important not only for improving the performance of low-power resistive switching memory, but also helpful for designing other nonvolatile memory devices.
service Email alerting click here top right corner of the article or Receive free email alerts when new articles cite this article -sign up in the box at the http://esl.ecsdl.org/subscriptions go to: Electrochemical and Solid-State Letters To subscribe toA bipolar resistive switching memory device with a low power operation ͑200 A ϫ 1.3 V͒ in a W/Ge 0.4 Se 0.6 /Cu/Al structure is investigated. A high quality Ge 0.4 Se 0.6 solid electrolyte is confirmed by X-ray photoelectron spectroscopy. The resistive memory device with a small via size of 0.2 m has a large threshold voltage of Ͼ0.4 V, high resistance ratio ͑R high /R low ͒ of Ͼ10 2 , and good uniformity. The switching mechanisms are due to the Cu metallic filament formation and dissolution from the Ge 0.4 Se 0.6 solid electrolyte under positive and negative biases, respectively, which have been confirmed by high resolution transmission electron microscopy image and energy-dispersive X-ray spectroscopy analysis. The strong Cu filament formation can also be investigated by monitoring the erase voltage and erase current. Good endurance of Ͼ10 5 cycles is obtained. Excellent data retention characteristics at 85°C are observed after 24 h of retention time, owing to the strong Cu metallic filament formation in the Ge 0.4 Se 0.6 solid electrolyte.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.