In this work, the microstructure and nanoindentation hardness properties of Ti-Al-Si-xMo alloys produced through laser in-situ alloying using laser engineered net shaping (LENS) technology were investigated. The microstructures and phases present were examined by means of scanning electron microscopy (SEM) equipped with an electron dispersion spectrometer (EDS), while the mechanical properties were studied using a nanoindentation tester. The microstructures exhibited fine lamellar α2-Ti3Al/γ-TiAl colonies surrounded with ζ-Ti5Si3 and ordered β0-TiAl phase in the as-produced state; while after heat treatments coarse β0-phase was observed to be embedded within the lamellae colonies. Microstructural analysis showed that β0-phase precipitated not only at the α2/γ lamellae colony boundaries but also inside the lamellae owing to the relatively high content of the β0-phase present. Nanoindentation testing showed that the indentation hardness of this current alloy is comparable to most TiAl alloys. This study also reveals that Mo additions generally increase hardness values, but only minor effects on hardness are observed at 1400 oC heat treatment temperature. Thus, Mo additions for TiAl alloys demonstrate positive effects on mechanical properties when less than 5 at.% of the alloy composition but the mechanical properties would either reduce or remains unchanged with further increase in Mo.
Recently, laser additive manufacturing (LAM) technologies are increasingly being applied for producing components with excellent physical and mechanical properties in the aerospace, automotive and energy industries. This work is aimed at modelling the fatigue usage factor of γ-TiAl alloy fabricated through LAM. The modelling and simulation were performed using the COMSOL Multiphysics 5.4 software by developing a y-TiAl alloy microstructure. This was modelled to generate the material properties (density, heat capacity at constant pressure and thermal conductivity) from the microstructure of a unit cell as a general representation of the alloy. The computed properties were used in modelling the LAM process to fabricate γ-TiAl alloy part with subsequent fatigue simulation to determine the usage factor (Ke). From the models, the maximum Von Mises stress and transient temperature were 2.88 x108 Nm-2 and 1510 K respectively, for the LAM fabrication process; while the fatigue usage factor model showed a maximum Von Mises stress of 2.91 x108 Nm-2 and a fatigue usage factor of 0.35.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.