It has been recently shown that spot volatilities can be very well modeled by rough stochastic volatility type dynamics. In such models, the log-volatility follows a fractional Brownian motion with Hurst parameter smaller than 1/2. This result has been established using high frequency volatility estimations from historical price data. We revisit this finding by studying implied volatility based approximations of the spot volatility. Using at-the-money options on the S&P500 index with short maturity, we are able to confirm that volatility is rough. The Hurst parameter found here, of order 0.3, is slightly larger than that usually obtained from historical data. This is easily explained from a smoothing effect due to the remaining time to maturity of the considered options.
We use supervised learning to identify factors that predict the cross-section of maximum drawdown for stocks in the US equity market. Our data run from January 1980 to June 2018 and our analysis includes ordinary least squares, penalized linear regressions, tree-based models, and neural networks. We find that the most important predictors tended to be consistent across models, and that non-linear models had better predictive power than linear models. Predictive power was higher in calm periods than stressed periods, and environmental, social, and governance indicators augmented predictive power for non-linear models. arXiv:1905.05237v1 [q-fin.ST]
Guaranteed Minimum Income benefit are variable annuities contract, which offer the policyholder the possibility to con- vert the guarantee level into an annuities income for life. This paper focuses on the optimal customer behavior assuming the maximization of the discounted expected future cash flows over the full life of the contract duration. Using convenient scaling properties of the contract value enables to reduce the complexity (dimension) of the problem and to characterize the policyholder’s decision as a function of the contract moneyness across four main choices: zero withdrawals, guaranteed withdrawals, lapse and the income period election. Sensitivities to key drivers such as the market volatility, the interest rate and the roll-up rate illustrate how crucial are not only the environment, but also the product design features, in order to ensure a fair and robust pricing for both customer and life insurer. In particular, the authors find that most empirical contracts are usually underpriced compared to mean optimal behavior pricing, which empirically translated into multiple updates of behavior assumptions and re-reserving by life insurers in the recent years.
We consider the optimal execution of a book of options when market impact is a driver of the option price. We aim at minimizing the mean-variance risk criterion for a given market impact function. First, we develop a framework to justify the choice of our market impact function. Our model is inspired from Leland’s option replication with transaction costs where the market impact is directly part of the implied volatility function. The option price is then expressed through a Black– Scholes-like PDE with a modified implied volatility directly dependent on the market impact. We set up a stochastic control framework and solve an Hamilton–Jacobi–Bellman equation using finite differences methods. The expected cost problem suggests that the optimal execution strategy is characterized by a convex increasing trading speed, in contrast to the equity case where the optimal execution strategy results in a rather constant trading speed. However, in such mean valuation framework, the underlying spot price does not seem to affect the agent’s decision. By taking the agent risk aversion into account through a mean-variance approach, the strategy becomes more sensitive to the underlying price evolution, urging the agent to trade faster at the beginning of the strategy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.