Abstract-Reducing user attrition, i.e. churn, is a broad challenge faced by several industries. In mobile social games, decreasing churn is decisive to increase player retention and rise revenues. Churn prediction models allow to understand player loyalty and to anticipate when they will stop playing a game. Thanks to these predictions, several initiatives can be taken to retain those players who are more likely to churn.Survival analysis focuses on predicting the time of occurrence of a certain event, churn in our case. Classical methods, like regressions, could be applied only when all players have left the game. The challenge arises for datasets with incomplete churning information for all players, as most of them still connect to the game. This is called a censored data problem and is in the nature of churn. Censoring is commonly dealt with survival analysis techniques, but due to the inflexibility of the survival statistical algorithms, the accuracy achieved is often poor. In contrast, novel ensemble learning techniques, increasingly popular in a variety of scientific fields, provide high-class prediction results.In this work, we develop, for the first time in the social games domain, a survival ensemble model which provides a comprehensive analysis together with an accurate prediction of churn. For each player, we predict the probability of churning as function of time, which permits to distinguish various levels of loyalty profiles. Additionally, we assess the risk factors that explain the predicted player survival times. Our results show that churn prediction by survival ensembles significantly improves the accuracy and robustness of traditional analyses, like Cox regression.
Abstract-The classification of time series data is a challenge common to all data-driven fields. However, there is no agreement about which are the most efficient techniques to group unlabeled time-ordered data. This is because a successful classification of time series patterns depends on the goal and the domain of interest, i.e. it is application-dependent.In this article, we study free-to-play game data. In this domain, clustering similar time series information is increasingly important due to the large amount of data collected by current mobile and web applications. We evaluate which methods cluster accurately time series of mobile games, focusing on player behavior data. We identify and validate several aspects of the clustering: the similarity measures and the representation techniques to reduce the high dimensionality of time series. As a robustness test, we compare various temporal datasets of player activity from two free-to-play video-games.With these techniques we extract temporal patterns of player behavior relevant for the evaluation of game events and gamebusiness diagnosis. Our experiments provide intuitive visualizations to validate the results of the clustering and to determine the optimal number of clusters. Additionally, we assess the common characteristics of the players belonging to the same group. This study allows us to improve the understanding of player dynamics and churn behavior.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.