Colloidal clusters conduct heat more efficiently compared to fully dispersed particles at the same volume fraction. Here we present a predictive model to calculate the thermal conductivity of clusters by extending Maxwell's theory to non-spherical particles. We treat clusters as spheres with effective thermal conductivity k c and volume fraction / c . We calculate the conductivity of the cluster from the upper bound of Maxwell's theory and the conductivity of a dispersion of such clusters from the lower limit of the theory. We find that structure effects can be represented by a single parameter and provide a method to obtain this parameter from numerical simulations. We test the theory against a system of colloidal clusters produced by controlled aggregation of silica spheres 39 nm in diameter and obtain good agreement. The results suggest that the variability of literature data and the unusually high values of thermal conductivity that have been reported in the literature can be explained quantitatively by the presence of clusters.
We quantify the effect of clustering on the thermal conductivity of colloidal dispersions using silane-treated silica, a system engineered to exhibit reversible clustering under well-controlled conditions. We show that the thermal conductivity increases monotonically with cluster size and spans the entire range between the two limits of Maxwell's theory. The results, corroborated by numerical simulation, demonstrate that large increases of the thermal conductivity of colloidal dispersions are possible, yet fully within the predictions of classical theory.
We develop a reversible colloidal system of silica nanoparticles whose state of aggregation is controlled reproducibly from a state of fully dispersed nanoparticles to that of a colloidal gel and back. The surface of silica nanoparticles is coated with various amino silanes to identify a silane capable of forming a monolayer on the surface of the particles without causing irreversible aggregation. Of the three silanes used in this study, N-[3-(trimethoxysilyl)propyl]ethylenediamine was found to be capable of producing monolayers up to full surface coverage without inducing irreversible aggregation of the nanoparticles. At near full surface coverage the electrokinetic behavior of the functionalized silica is completely determined by that of the aminosilane. At acidic pH the ionization of the amino groups provides electrosteric stabilization and the system is fully dispersed. At basic pH, the dispersion state is dominated by the hydrophobic interaction between the uncharged aminosilane chains in the aqueous environment and the system forms a colloidal gel. At intermediate pH values the dispersion state is dominated by the balance between electrostatic and hydrophobic interactions, and the system exists in clusters whose size is determined solely by the pH. The transformation between states of aggregation is reversible and a reproducible function of pH. The rate of gelation can be controlled to be as fast as minutes while deaggregation is much slower and takes several hours to complete.
In aircraft applications, fuel is used not only as a propellant but also as a coolant and improving both the thermal conductivity and combustion enthalpy of the fuel is beneficial in these applications. These properties can be enhanced by dispersing aluminum nanoparticles into the fuel; however, the nanoparticles require stabilization from agglomeration and passivation from oxidation in order for these benefits to be realized in aircraft applications. To provide this passivation and stabilization, aluminum nanoparticles were encapsulated with a coating by the plasma enhanced chemical vapor deposition (PE-CVD) method from toluene precursors. The thermal conductivity, combustion and ignition properties, and stability of the nanoparticles dispersed in RP-2 fuel were subsequently evaluated. In addition, the effect of dispersing aluminum nanoparticles in RP-2 fuel on the erosion rate of fuel nozzles was evaluated. The dispersion of PE-CVD coated aluminum nanoparticles at a concentration of 3.0% by volume exhibited a 17.7% and 0.9% increase in thermal conductivity and volumetric enthalpy of combustion, respectively, compared to the baseline RP-2 fuel. Additionally, particle size analysis (PSA) of the PE-CVD coated aluminum nanofuel exhibited retention of particle size over a fivemonth storage period and erosion testing of a 1 mm stainless steel nozzle exhibited a negligible 1% change in discharge coefficient after 100 hours of testing.
The presence of colloidal particles is known to increase the thermal conductivity of base fluids. The shape and structure of the solid particles are important in determining the magnitude of enhancement. Spherical particles-the only shape for which analytic theories exist-produce the smallest enhancement. Nonspherical shapes, including clusters formed by colloidal aggregation, provide substantially higher enhancements. We conduct a numerical study of the thermal conductivity of nonspherical structures dispersed in a liquid at fixed volume fraction in order to identify structural features that promote the conduction of heat. We find that elongated structures provide high enhancements, especially if they are long enough to create a solid network (colloidal gel). Cross-linking further enhances thermal transport by directing heat in multiple directions. The most efficient structure is the one formed by hollow spheres consisting of a solid shell and a core filled by the fluid. In both dispersed and aggregated forms, hollow spheres provide enhancements that approach the theoretical limit set by Maxwell's theory.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.