We critically review potential involvement of trimethylamine-N-oxide (TMAO) as a link between diet, the gut microbiota and cardiovascular disease (CVD). Generated primarily from dietary choline and carnitine by gut bacteria and hepatic flavin monooxygenase (FMO) activity, TMAO could promote cardiometabolic disease when chronically elevated. However, control of circulating TMAO is poorly understood, and diet, age, body mass, sex hormones, renal clearance, FMO3 expression and genetic background may explain as little as 25% of TMAO variance. The basis of elevations with obesity, diabetes, atherosclerosis or coronary heart disease (CHD) is similarly ill-defined, although gut microbiota profiles/remodelling appear critical. Elevated TMAO could promote CVD via inflammation, oxidative stress, scavenger receptor (SR) up-regulation, reverse cholesterol transport (RCT) inhibition, and cardiovascular dysfunction. However, concentrations influencing inflammation, SRs and RCT (≥100 µM) are only achieved in advanced heart failure (HF) or chronic kidney disease (CKD), and greatly exceed pathogenicity of <1-5 µM levels implied in some TMAO-CVD associations. There is also evidence CVD risk is insensitive to TMAO variance beyond these levels in omnivores and vegetarians, and that major TMAO sources are cardioprotective. Assessing available evidence suggests modest elevations in TMAO (≤10 µM) are a non-pathogenic consequence of diverse risk factors (aging, obesity, dyslipidaemia, insulin-resistance/diabetes, renal dysfunction), indirectly reflecting CVD risk without participating mechanistically. Nonetheless, TMAO may surpass a pathogenic threshold as a consequence of CVD/CKD, secondarily promoting disease progression. TMAO might thus reflect early CVD risk while providing a prognostic biomarker or secondary target in established disease, although mechanistic contributions to CVD await confirmation.
Whether dietary omega-3 (n-3) polyunsaturated fatty acid (PUFA) confers cardiac benefit in cardiometabolic disorders is unclear. We test whether dietary -linolenic acid (ALA) enhances myocardial resistance to ischemia-reperfusion (I-R) and responses to ischemic preconditioning (IPC) in type 2 diabetes (T2D); and involvement of conventional PUFA-dependent mechanisms (caveolins/cavins, kinase signaling, mitochondrial function, and inflammation). Eight-week male C57Bl/6 mice received streptozotocin (75 mg/kg) and 21 weeks high-fat/high-carbohydrate feeding. Half received ALA over six weeks. Responses to I-R/IPC were assessed in perfused hearts. Localization and expression of caveolins/cavins, protein kinase B (AKT), and glycogen synthase kinase-3 β (GSK3β); mitochondrial function; and inflammatory mediators were assessed. ALA reduced circulating leptin, without affecting body weight, glycemic dysfunction, or cholesterol. While I-R tolerance was unaltered, paradoxical injury with IPC was reversed to cardioprotection with ALA. However, post-ischemic apoptosis (nucleosome content) appeared unchanged. Benefit was not associated with shifts in localization or expression of caveolins/cavins, p-AKT, p-GSK3β, or mitochondrial function. Despite mixed inflammatory mediator changes, tumor necrosis factor-a (TNF-a) was markedly reduced. Data collectively reveal a novel impact of ALA on cardioprotective dysfunction in T2D mice, unrelated to caveolins/cavins, mitochondrial, or stress kinase modulation. Although evidence suggests inflammatory involvement, the basis of this “un-conventional” protection remains to be identified.
Trimethylamine-N-oxide (TMAO) is an end-product of gut-microbiome metabolism linked to cardiovascular disease (CVD). However, precise cardiovascular influences of the TMAO concentrations reported in early or severe disease remain to be detailed. We investigated acute effects of TMAO on cardiac contractile, coronary and mitochondrial function. Male C57Bl/6 mouse hearts were Langendorff perfused to assess concentration-dependent effects of TMAO (1-300 µM) on left ventricular (LV) function, coronary flow and select protein expression. Effects of 10 and 100 µM TMAO on LV mitochondrial function were examined via respirometry. TMAO at 10-300 µM concentration-dependently depressed LV contractile function, with coronary flow paralleling changes in isovolumic pressure development. Direct coronary effects were evident at >30 µM TMAO in hearts performing minimal isovolumic work, though this response was reduced by >65%. In contrast, exposure to 10 or 100 µM TMAO increased mitochondrial complex I, II and maximal respiratory fluxes while appearing to reduce outer membrane integrity. Expression of phospho-AMPKα and total GSK-3β declined. Acute exposure to TMAO levels reported in advanced CVD significantly inhibits cardiac contractility and induces modest coronary constriction while paradoxically over-activating mitochondrial respiration.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.