One of the issues that triggers worlds lately is the increasing rate of the unemployment rate. Consequently, this research objective is to compare the most accurate forecast method and to find the most suitable period to predict the future of Malaysia’s unemployment rate in 2016. There are five sets of Malaysia’s unemployment rate and three forecasting methods being used which are Naïve, Simple Exponential Smoothing (SES) and Holt’s method. The forecasting model was then selected based on the smallest accuracy measures. The results indicated that Holt’s is the optimal model in forecasting the overall yearly unemployment rate, male yearly unemployment rate and overall quarterly unemployment rate. Furthermore, for female yearly unemployment rate and overall monthly unemployment rate, the best forecasting method was SES. Meanwhile, the overall unemployment rate of Malaysia in year 2016 was predicted to be 2.9% while 3.4% was estimated to be the value of unemployment rate for second half year of 2016 by using quarterly and monthly data. The forecast value was remained the same as previous year for overall yearly male data and female data which were 2.9% and 3.3% respectively. Lastly, the best period in forecasting Malaysia’s overall unemployment rate was found to be month with the value of 3.4%.
Tourism industry in Malaysia is crucial and has contributes a huge part in Malaysia’s economic growth. The capability of forecasting field in tourism industry can assist people who work in tourism-related-business to make a correct judgment and plan future strategy by providing the accurate forecast values of the future tourism demand. Therefore, this research paper was focusing on tourism demand forecasting by applying Box-Jenkins approach on tourists arrival data in Malaysia from 1998 until 2017. This research paper also was aiming to produce the accurate forecast values. In order to achieve that, the error of forecast for each model from Box-Jenkins approach was measured and compared by using Akaike Information Criterion (AIC), Mean Absolute Deviation (MAD), Mean Square Error (MSE) and Mean Absolute Percentage Error (MAPE). Model that produced the lowest error was chosen to forecast Malaysia tourism demand data. Several candidate models have been proposed during analysis but the final model selected was SARIMA (1,1,1)(1,1,4)12. It is hoped that this research will be useful in forecasting field and tourism industry.
The analysis of traffic road accidents is increasingly important because of the accidents cost and public road safety. The availability or large data sets makes the study of factors that affect the frequency and severity accidents are viable. However, the data are often highly unbalanced and overlapped. We deal with the data set of the road traffic accidents recorded in Christchurch, New Zealand, from 2000-2009 with a total of 26440 accidents. The data is in a binary set and there are 50 factors road traffic accidents with four level of severity. We used genetic algorithm for the analysis because we are in the presence of a large unbalanced data set and standard clustering like k-means algorithm may not be suitable for the task. The genetic algorithm based on clustering for unknown K, (GCUK) has been used to identify the factors associated with accidents of different levels of severity. The results provided us with an interesting insight into the relationship between factors and accidents severity level and suggest that the two main factors that contributes to fatal accidents are “Speed greater than 60 km h” and “Did not see other people until it was too late”. A comparison with the k-means algorithm and the independent component analysis is performed to validate the results
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.