Apple (Malus×domestica Borkh) is among the main sources of phenolic compounds in the human diet. The genetic basis of the quantitative variations of these potentially beneficial phenolic compounds was investigated. A segregating F1 population was used to map metabolite quantitative trait loci (mQTLs). Untargeted metabolic profiling of peel and flesh tissues of ripe fruits was performed using liquid chromatography–mass spectrometry (LC-MS), resulting in the detection of 418 metabolites in peel and 254 in flesh. In mQTL mapping using MetaNetwork, 669 significant mQTLs were detected: 488 in the peel and 181 in the flesh. Four linkage groups (LGs), LG1, LG8, LG13, and LG16, were found to contain mQTL hotspots, mainly regulating metabolites that belong to the phenylpropanoid pathway. The genetics of annotated metabolites was studied in more detail using MapQTL®. A number of quercetin conjugates had mQTLs on LG1 or LG13. The most important mQTL hotspot with the largest number of metabolites was detected on LG16: mQTLs for 33 peel-related and 17 flesh-related phenolic compounds. Structural genes involved in the phenylpropanoid biosynthetic pathway were located, using the apple genome sequence. The structural gene leucoanthocyanidin reductase (LAR1) was in the mQTL hotspot on LG16, as were seven transcription factor genes. The authors believe that this is the first time that a QTL analysis was performed on such a high number of metabolites in an outbreeding plant species.
A mutant allele of the transcription factor gene MYB10 from apple induces anthocyanin production throughout the plant. This gene, including its upstream promoter, gene coding region and terminator sequence, was introduced into apple, strawberry and potato plants to determine whether it could be used as a visible selectable marker for plant transformation as an alternative to chemically selectable markers, such as kanamycin resistance. After transformation, red coloured calli, red shoots and red well-growing plants were scored. Red and green shoots were harvested from apple explants and examined for the presence of the MYB10 gene by PCR analysis. Red shoots of apple explants always contained the MYB10 gene but not all MYB10 containing shoots were red. Strawberry plants transformed with the MYB10 gene showed anthocyanin accumulation in leaves and roots. No visible accumulation of anthocyanin could be observed in potato plants grown in vitro, even the ones carrying the MYB10 gene. However, acid methanol extracts of potato shoots or roots carrying the MYB10 gene contained up to four times higher anthocyanin content than control plants. Therefore anthocyanin production as result of the apple MYB10 gene can be used as a selectable marker for apple, strawberry and potato transformation, replacing kanamycin resistance.Electronic supplementary materialThe online version of this article (doi:10.1007/s11248-011-9490-1) contains supplementary material, which is available to authorized users.
Soil pollution caused by heavy metals is one of the major problems throughout the world. To maintain a safe and healthy environment for human beings, there is a dire need to identify hyperaccumulator plants and the underlying genes involved in heavy metals stress tolerance and accumulation. The goal of this research is to explore the potential of hemp as a decontaminator of heavy metals by identifying the two important heavy metals responsive genes, glutathione-disulfidereductase (GSR) and phospholipase D-a (PLDa). The results revealed heavy metals accumulation; Cu (1530 mg kg ) in hemp plants' leaves collected from the contaminated site. This shows the ability of the hemp plant to tolerate heavy metals, perhaps due to the presence of stress tolerance genes. In this study, partial sequences of putative GSR (215 bp) and PLDa (517 bp) genes were identified, responsive to heavy metals stress in hemp leaves. Both genes exhibited 40-60% sequence identity to previously reported genes from other plant species. Glutathione binding residues and conserved arginine residues were found identical in a putative GSR gene to those of other plant species, while the phospholipids binding domain and catalytic domain were found in the PLDa gene. These results will help to improve our understanding about the phytoremediation potential of hemp as well as in manipulating GSR and PLDa genes in breeding programs to produce transgenic heavy-metals-tolerant varieties.
Diversity Arrays Technology (DArT) provides a high-throughput whole-genome genotyping platform for the detection and scoring of hundreds of polymorphic loci without any need for prior sequence information. The work presented here details the development and performance of a DArT genotyping array for apple. This is the first paper on DArT in horticultural trees. Genetic mapping of DArT markers in two mapping populations and their integration with other marker types showed that DArT is a powerful high-throughput method for obtaining accurate and reproducible marker data, despite the low cost per data point. This method appears to be suitable for aligning the genetic maps of different segregating populations. The standard complexity reduction method, based on the methylation-sensitive PstI restriction enzyme, resulted in a high frequency of markers, although there was 52–54% redundancy due to the repeated sampling of highly similar sequences. Sequencing of the marker clones showed that they are significantly enriched for low-copy, genic regions. The genome coverage using the standard method was 55–76%. For improved genome coverage, an alternative complexity reduction method was examined, which resulted in less redundancy and additional segregating markers. The DArT markers proved to be of high quality and were very suitable for genetic mapping at low cost for the apple, providing moderate genome coverage.Electronic supplementary materialThe online version of this article (doi:10.1007/s11032-011-9579-5) contains supplementary material, which is available to authorized users.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.