The emergence of multidrug-resistant microbes and the propagation of cancer cells are global health issues. The unique properties of chitosan and its derivatives make it an important candidate for therapeutic applications. Herein, a new thiadiazole derivative, 4-((5-(butylthio)-1,3,4-thiadiazol-2-yl) amino)-4-oxo butanoic acid (BuTD-COOH) was synthesized and used to modify the chitosan through amide linkages, forming a new thiadiazole chitosan derivative (BuTD-CH). The formation of thiadiazole and the chitosan derivative was confirmed by FT-IR, 1H/13C-NMR, GC–MS, TGA, Elemental analysis, and XPS. The BuTD-CH showed a high antimicrobial effect against human pathogens Escherichia coli, Pseudomonas aeruginosa, Bacillus subtilis, Staphylococcus aureus, and Candida albicans with low MIC values of 25–50 μg ml−1 compared to unmodified chitosan. The in-vitro cytotoxicity of BuTD-CH was evaluated against two cancer cell lines (MCF-7 and HepG2) and one normal cell (HFB4) using the MTT method. The newly synthesized derivatives showed high efficacy against cancerous cells and targeted them at low concentrations (IC50 was 178.9 ± 9.1 and 147.8 ± 10.5 μg ml−1 for MCF-7 and HepG2, respectively) compared with normal HFB4 cells (IC50 was 335.7 ± 11.4 μg ml−1). Thus, low concentrations of newly synthesized BuTD-CH could be safely used as an antimicrobial and pharmacological agent for inhibiting the growth of human pathogenic microbes and hepatocellular and adenocarcinoma therapy.
Ketene dithioacetals [5][6][7][8][9][10][11][12][13][14] are one of the most common starting materials for the synthesis of pyrazoles. The reactions of ketene dithioacetals 1a,b with thiocarbohydrazide or thiosemicarbazide in hot ethanol afford the corresponding pyrazole derivatives 2a-d, respectively (Scheme 1). In addition, the syntheses of 2a-d could also be achieved through hydrazinolysis or ammonolysis of pyrazolyldithio-carbonate 3a,b, Scheme 1.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.