Standard-Nutzungsbedingungen:Dieses Dokument darf zu eigenen wissenschaftlichen Zwecken und zum Privatgebrauch gespeichert und kopiert werden. Sie dürfen dieses Dokument nicht für öffentliche oder kommerzielle Zwecke vervielfältigen, öffentlich ausstellen, aufführen, vertreiben oder anderweitig nutzen. Sofern für das Dokument eine Open-Content-Lizenz verwendet wurde, so gelten abweichend von diesen Nutzungsbedingungen die in der Lizenz gewährten Nutzungsrechte.
Terms of use:This document may be saved and copied for your personal and scholarly purposes. You are not to copy it for public or commercial purposes, to exhibit the document in public, to perform, distribute or otherwise use the document in public. If the document is made available under a Creative Commons Licence you may exercise further usage rights as specified in the licence.
Search engine users issue queries to formulate their information need and gain useful insights. However, it is challenging for search engines to understand different users' search type intents and return appropriate results. Simulating user search behaviour allows information retrieval systems (IR) to parameterise the a-priori distribution of search types using different back-end configurations and user interface variants to improve the retrieval functionality. In this paper, we propose a formal Markov approach in which we utilise the context discovery process to model user-type specific behaviour by capturing the user's query change in a search session. Contextual Markov models have been used in the past to improve the prediction of user intentions, we investigate here their efficiency in simulating user-type specific interactions. Additionally, we provide an empirical and classification-based evaluation that can be used in simulation assessment. Overall, we report that the proposed approach reliably simulates user-type specific behaviour on a real-world academic search engine log dataset.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.