Several groups have generated programmable transcription factors based on the versatile Cas9 protein, yet their relative potency and effectiveness across various cell types and species remain unexplored. Here, we compare Cas9 activator systems and examine their ability to induce robust gene expression in several human, mouse, and fly cell lines. We also explore the potential for improved activation through the combination of the most potent activator systems and assess the role of cooperativity in maximizing gene expression.
Under the assumption of mass-action kinetics, a dynamical system may be induced by several different reaction networks and/or parameters. It is therefore possible for a mass-action system to exhibit complex-balancing dynamics without being weakly reversible or satisfying toric constraints on the rate constants; such systems are called disguised toric dynamical systems. We show that the parameters that give rise to such systems are preserved under invertible affine transformations of the network. We also consider the dynamics of arbitrary mass-action systems under affine transformations, and show that there is a canonical bijection between their sets of positive steady states, although their qualitative dynamics can differ substantially.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.