Electrophoretic mobility of various analytes can be modeled and thus also predicted using artificial neural networks (ANNs) evaluating experiments done according to a suitable experimental design. In contrast to response surfaces modeling which can be used to predict optimal separation conditions, ANNs combined with experimental design were shown to be efficient for modeling and prediction of optimal separation conditions, while no explicit model and any knowledge of the physicochemical constants is needed. Methodology has been developed and demonstrated on separation of inorganic cations and organic oximes while various additives (methanol, complexation agent), pH or buffer concentration were followed. In our approach proposed the number of experiments necessary to find optimal separation conditions can be reduced significantly.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.