SUMMARYThe present study investigates regional climate change impacts on agricultural crop production in Central and Eastern Europe, including local case studies with different focuses in Austria, the Czech Republic and Slovakia. The area studied experiences a continental European climate and is characterized by strong climatic gradients, which may foster regional differences or trends in the impacts of climate change on agriculture. To study the regional aspects and variabilities of climate change impacts on agriculture, the effect of climate change on selected future agroclimatic conditions, crop yield and variability (including the effect of higher ambient CO2 concentrations) and the most important yield limiting factors, such as water availability, nitrogen balance and the infestation risks posed by selected pests were studied. In general, the results predicted significant agroclimatic changes over the entire area during the 21st century, affecting agricultural crop production through various pathways. Simulated crop yield trends confirmed past regional studies but also revealed that yield-limiting factors may change from region to region. For example, pest pressures, as demonstrated by examining two pests, are likely to increase due to warmer conditions. In general, higher potentials for cereal yield increase are seen for wetter and cooler regions (i.e. uplands) than for the drier and warmer lowlands, where yield potentials will be increasingly limited by decreasing crop water availability and heat under most scenarios. In addition, yield variability will increase during the coming decades, but this may decrease towards the end of the 21st century. The present study contributes to the interpretation of previously conducted climate change impact and adaptation studies for agriculture and may prove useful in proposing future research in this field.
The main objective of the present crop simulation study was to determine the impact of climate change on the winter wheat production of a dry area situated in north-east Austria (Marchfeld region) based on the CERES-Wheat crop-growth simulation model associated with global circulation models (GCMs). The effects of some of the feasible regional-and farm-based adaptation measures (management options) on crop yield and water and nitrogen (N) balance under the climate scenarios were simulated. Climate scenarios were defined based on the ECHAM5, HadCM3 and NCAR PCM GCM simulations for future conditions (2021-50) as described in the Special Report on Emission Scenarios A1B (Nakicenovic & Swart 2000). The potential development, yield, water demand and soil N leaching were estimated for winter wheat and all of the defined climates (including rising CO 2 levels) and management scenarios (soil cultivation, windbreaks and irrigation).The results showed that a warming of 2°C in the air temperature would shorten the crop-growing period by up to 20 days and would decrease the potential winter wheat yield on nearly all of the soil types in the region. Particularly, high-yield reductions were projected for light-textured soils such as Parachernozems. A change from ploughing to minimum tillage within the future scenario would lead to an increase of up to 8% of the mean yield of winter wheat. This effect mainly resulted from improved water supply to the crop, associated with higher soil water storage capacity and decrease of unproductive water losses. Hedgerows, which reduce the wind speed, were predicted to have particularly positive effects on medium and moderately fine-textured soils such as Chernozems and Fluvisols. With both management changes, regional mean-yield level can be expected to be +4% in comparison with no management changes in the future conditions. Compared with the baseline period, water demand for the potential yield of winter wheat would require 6-37 mm more water per crop season (areaweighted average). The highest water demand would be on medium-textured soils, which make up the largest amount of area in the study region. Additionally, the effects of snow accumulation near hedgerows would further increase the yield, but would also lead to higher N leaching rates. However, specific management options, such as minimum tillage and hedgerows, could contribute towards reducing the increasing water demand.
SUMMARYThe objective of the present study was to compare the performance of seven different, widely applied crop models in predicting heat and drought stress effects. The study was part of a recent suite of model inter-comparisons initiated at European level and constitutes a component that has been lacking in the analysis of sources of uncertainties in crop models used to study the impacts of climate change. There was a specific focus on the sensitivity of models for winter wheat and maize to extreme weather conditions (heat and drought) during the short but critical period of 2 weeks after the start of flowering. Two locations in Austria, representing different agro-climatic zones and soil conditions, were included in the simulations over 2 years, 2003 and 2004, exhibiting contrasting weather conditions. In addition, soil management was modified at both sites by following either ploughing or minimum tillage. Since no comprehensive field experimental data sets were available, a relative comparison of simulated grain yields and soil moisture contents under defined weather scenarios with modified temperatures and precipitation was performed for a 2-week period after flowering. The results may help to reduce the uncertainty of simulated crop yields to extreme weather conditions through better understanding of the models’ behaviour. Although the crop models considered (DSSAT, EPIC, WOFOST, AQUACROP, FASSET, HERMES and CROPSYST) mostly showed similar trends in simulated grain yields for the different weather scenarios, it was obvious that heat and drought stress caused by changes in temperature and/or precipitation for a short period of 2 weeks resulted in different grain yields simulated by different models. The present study also revealed that the models responded differently to changes in soil tillage practices, which affected soil water storage capacity.
During the past few decades, the basic assumption of agroclimatic zoning, i.e., that agroclimatic conditions remain relatively stable, has been shattered by ongoing climate change. The first aim of this study was to develop a tool that would allow for effective analysis of various agroclimatic indicators and their dynamics under climate change conditions for a particular region. The results of this effort were summarized in the AgriClim software package, which provides users with a wide range of parameters essential for the evaluation of climate-related stress factors in agricultural crop production. The software was then tested over an area of 114,000 km 2 in Central Europe. We have found that by 2020, the combination of increased air temperature and changes in the amount and distribution of precipitation will lead to a prolonged growing season and significant shifts in the agroclimatic zones in Central Europe; in particular, the areas that are currently most productive will be reduced and replaced by warmer but drier conditions in the same time the higher elevations will most likely experience improvement in their agroclimatic conditions. This positive effect might be short-lived, as by 2050, even these areas might experience much drier conditions than observed currently. Both the rate and the scale of the shift are amazing as by 2020 (assuming upper range of the climate change projections) only 20-38% of agriculture land in the evaluated 262 Climatic Change (2011) 108:261-289 region will remain in the same agroclimatic and by 2050 it might be less than 2%. On the other hand farmers will be able to take advantage of an earlier start to the growing season, at least in the lowland areas, as the proportion of days suitable for sowing increases. As all of these changes might occur within less than four decades, these issues could pose serious adaptation challenges for farmers and governmental policies. The presented results also suggest that the rate of change might be so rapid that the concept of static agroclimatic zoning itself might lose relevance due to perpetual change.
SUMMARYOne of the main problems in estimating the effects of climate change on crops is the identification of those factors limiting crop growth in a selected environment. Previous studies have indicated that considering simple trends of either precipitation or temperature for the coming decades is insufficient for estimating the climate impact on yield in the future. One reason for this insufficiency is that changes in weather extremes or seasonal weather patterns may have marked impacts.The present study focuses on identifying agroclimatic parameters that can identify the effects of climate change and variability on winter wheat yield change in the Pannonian lowland. The impacts of soil type under past and future climates as well as the effect of different CO2 concentrations on yield formation are also considered. The Vojvodina region was chosen for this case study because it is a representative part of the Pannonian lowland.Projections of the future climate were taken from the HadCM3, ECHAM5 and NCAR-PCM climate models with the SRES-A2 scenario for greenhouse gas (GHG) emissions for the 2040 and 2080 integration periods. To calibrate and validate the Met&Roll weather generator, four-variable weather data series (for six main climatic stations in the Vojvodina region) were analysed. The grain yield of winter wheat was calculated using the SIRIUS wheat model for three different CO2 concentrations (330, 550 and 1050 ppm) dependent on the integration period. To estimate the effects of climatic parameters on crop yield, the correlation coefficient between crop yield and agroclimatic indices was calculated using the AGRICLIM software. The present study shows that for all soil types, the following indices are the most important for winter wheat yields in this region: (i) the number of days with water and temperature stress, (ii) the accumulated precipitation, (iii) the actual evapotranspiration (ETa) and (iv) the water deficit during the growing season. The high positive correlations between yield and the ETa, accumulated precipitation and the ratio between the ETa and reference evapotranspiration (ETr) for the April–June period indicate that water is and will remain a major limiting factor for growing winter wheat in this region. Indices referring to negative impact on yield are (i) the number of days with a water deficit for the April–June period and (ii) the number of days with maximum temperature above 25 °C (summer days) and the number of days with maximum temperature above 30 °C (tropical days) in May and June. These indices can be seen as indicators of extreme weather events such as drought and heat waves.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.