Fecal bacteria were studied in healthy elderly volunteers (age, 63 to 90 years; n ؍ 35) living in the local community, elderly hospitalized patients (age, 66 to 103; n ؍ 38), and elderly hospitalized patients receiving antibiotic treatment (age, 65 to 100; n ؍ 21). Group-and species-specific primer sets targeting 16S rRNA genes were used to quantitate intestinal bacteria by using DNA extracted from feces and real-time PCR. The principal difference between healthy elderly volunteers and both patient cohorts was a marked reduction in the Bacteroides-Prevotella group following hospitalization. Reductions in bifidobacteria, Desulfovibrio spp., Clostridium clostridiiforme, and Faecalibacterium prausnitzii were also found in the hospitalized patients. However, total 16S rRNA gene copy numbers (per gram of wet weight of feces) were generally lower in the stool samples of the two groups of hospitalized patients compared to the number in the stool samples of elderly volunteers living in the community, so the relative abundance (percentage of the group-and species-specific rRNA gene copies in relation to total bacterial rRNA gene copies) of bifidobacteria, Desulfovibrio spp., C. clostridiiforme, and F. prausnitzii did not change. Antibiotic treatment resulted in further reductions in the numbers of bacteria and their prevalence and, in some patients, complete elimination of certain bacterial communities. Conversely, the numbers of enterobacteria increased in the hospitalized patients who did not receive antibiotics, and due to profound changes in fecal microbiotas during antibiotic treatment, the opportunistic species Enterococcus faecalis proliferated.
Synbiotic consumption increased the size and diversity of protective fecal bifidobacterial populations, which are often very much reduced in older people.
Chemolithotrophic nitrite oxidizers were enriched from five different soils including freshwater marsh, permafrost, garden, agricultural, and desert soils and monitored during the cultivation procedure. Immunoblot analysis was used to identify the nitrite oxidizing organisms with monoclonal antibodies, which recognize the key enzyme of nitrite oxidation in a genus-specific reaction [Bartosch et al. (1999) Appl Environ Microbiol 65:4126-4133]. The morphological characteristics of the enriched nitrite oxidizers were additionally studied using transmission electron microscopy (TEM) and fluorescence microscopy. By means of the antibodies and TEM analysis Nitrospira could be clearly identified in enrichment cultures derived from freshwater marsh and from permafrost soil. Nitrospira cells were enriched simultaneously with cells of the genus Nitrobacter when nitrite concentrations of 0.2 g of NaNO2 L(-1) were used. However, in enrichment cultures containing 2 g of NaNO2 L(-1) Nitrobacter was exclusively detected. During fluorescence microscopic observations of DAPI stained samples microcolonies were found in enrichment cultures from freshwater marsh, permafrost, garden, and agricultural soil. They had a similar morphology to Nitrospira-like microcolonies from activated sludge. In conclusion, Nitrospira seems to be not only a common aquatic but also a usual soil bacterium.
Immunoblot analyses performed with three monoclonal antibodies (MAbs) that recognized the nitrite oxidoreductase (NOR) of the genus Nitrobacter were used for taxonomic investigations of nitrite oxidizers. We found that these MAbs were able to detect the nitrite-oxidizing systems (NOS) of the generaNitrospira, Nitrococcus, andNitrospina. The MAb designated Hyb 153-2, which recognized the α subunit of the NOR (α-NOR), was specific for species belonging to the genus Nitrobacter. In contrast, Hyb 153-3, which recognized the β-NOR, reacted with nitrite oxidizers of the four genera. Hyb 153-1, which also recognized the β-NOR, bound to members of the generaNitrobacter and Nitrococcus. The molecular masses of the β-NOR of the genusNitrobacter and the β subunit of the NOS (β-NOS) of the genus Nitrococcus were identical (65 kDa). In contrast, the molecular masses of the β-NOS of the generaNitrospina and Nitrospira were different (48 and 46 kDa). When the genus-specific reactions of the MAbs were correlated with 16S rRNA sequences, they reflected the phylogenetic relationships among the nitrite oxidizers. The specific reactions of the MAbs allowed us to classify novel isolates and nitrite oxidizers in enrichment cultures at the genus level. In ecological studies the immunoblot analyses demonstrated thatNitrobacter or Nitrospira cells could be enriched from activated sludge by using various substrate concentrations. Fluorescence in situ hybridization and electron microscopic analyses confirmed these results. Permeated cells of pure cultures of members of the four genera were suitable for immunofluorescence labeling; these cells exhibited fluorescence signals that were consistent with the location of the NOS.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.