Aim: The study aimed to investigate the effect of a customary fluoride solution, containing sodium fluoride and amine fluoride, on initial biofilm formation on enamel and dentin in situ compared directly to chlorhexidine. Methods: Bovine enamel and dentin specimens were mounted on maxillary splints carried by 9 subjects. After 1 min of pellicle formation, rinses with tap water (control), chlorhexidine (meridol med CHX 0.2%, GABA) and a fluoride mouthrinse (elmex, GABA) were performed for 1 min. Subsequently, the slabs were carried for another 8 h. The adherent bacteria were determined by DAPI staining, live-dead staining and determination of colony-forming units after desorption; glucan formation was visualized with concanavalin A. Additionally, energy-dispersive X-ray spectroscopy (EDX) analysis of the in situ biofilm layers was conducted, and contact angle measurements were performed. Statistical evaluation was performed by means of the Kruskal-Wallis test followed by the Mann-Whitney U test (p < 0.05). Results: In the control group, significantly higher amounts of adherent bacteria were detected on dentin (4.8 × 106 ± 5.4 × 106 bacteria/cm2) than on enamel (1.2 × 106 ± 1.5 × 106 bacteria/cm2, DAPI). Chlorhexidine significantly reduced the amount of adherent bacteria (dentin: 2.8 × 105 ± 3.4 × 105 bacteria/cm2; enamel: 4.2 × 105 ± 8.7 × 105 bacteria/cm2). Rinses with the fluoride solution also significantly reduced bacterial adherence to dentin (8.1 × 105 ± 1.5 × 106 bacteria/cm2). Fluoride could not be detected by EDX analysis of the biofilms. Fluoride mouthrinsing did not influence the wettability of the pellicle-covered enamel surface. Conclusion: In addition to the reduction of demineralization and antibacterial effects, fluorides inhibit initial biofilm formation on dental hard tissues considerably, especially on dentin.
The Mediterranean plant Cistus incanus is rich in polyphenols and has shown several pharmacological activities, mainly antibacterial effects. Furthermore, in situ studies revealed that a C. incanus infusion reduces the initial bacterial adhesion in the oral cavity due to the polyphenols, an indication that C. incanus might reduce the risk of caries disease. In the present study, the polyphenols from four different commercial C. incanus herbal teas were extracted by standardized accelerated solvent extraction for in vitro tests and by an infusion for in situ tests. Both extracts were characterized qualitatively and quantitatively by high-performance liquid chromatography and only the polyphenol content differed slightly. By means of diode array detection and mass spectrometry, 29 polyphenols, including ellagitannins, flavanols, and glycosylated flavonols, were identified. Thereby, only quantitative but no qualitative differences between the four samples were detected. Furthermore, the in vitro antibacterial activity of the C. incanus accelerated solvent extracts against Streptococcus mutans, one of the primary cariogenic bacterial species, was examined using a live/dead assay (BacLight®). With this approach, C. incanus yielded antibacterial properties. Additional in situ experiments indicated that rinses with a C. incanus infusion reduced the initial bacterial colonization of enamel samples exposed to oral fluids for over eight hours. Furthermore, it was shown by transmission electron microscopy that the application of a C. incanus infusion modifies the ultrastructure of the acquired enamel pellicle, yielding a more electron-dense morphology. It can be assumed that the polyphenols are responsible for the observed effects.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.