Glucocorticoids are known to induce the transcription of integrated proviral mouse mammary tumour virus (MMTV) genes in a variety of cell lines derived from mouse mammary tumours. Chimaeric genes in which selectable markers are linked to the long terminal repeat (LTR) region of MMTV can be induced by the synthetic glucocorticoid dexamethasone after introduction into mouse fibroblasts. This suggests that the regulatory elements required for hormonal induction are located within the cloned LTR fragments. The idea is supported by the observation that glucocorticoid receptors bind to certain cloned fragments of MMTV DNA in vitro. Using filter binding studies and monoclonal antibodies to the glucocorticoid receptor we have now delimited the receptor binding region to a DNA segment of 152 base pairs (bp) that has been shown to be relevant for hormonal induction. In nuclease protection experiments we have identified partially homologous receptor binding sequences located in this region, all of which share the hexanucleotide 5'-TGTTCT-3'.
Humans lacking sclerostin display progressive bone overgrowth due to increased bone formation. Although it is well established that sclerostin is an osteocyte-secreted bone formation inhibitor, the underlying molecular mechanisms are not fully elucidated. We identified in tandem affinity purification proteomics screens LRP4 (low density lipoprotein-related protein 4) as a sclerostin interaction partner. Biochemical assays with recombinant proteins confirmed that sclerostin LRP4 interaction is direct. Interestingly, in vitro overexpression and RNAi-mediated knockdown experiments revealed that LRP4 specifically facilitates the previously described inhibitory action of sclerostin on Wnt1/-catenin signaling. We found the extracellular -propeller structured domain of LRP4 to be required for this sclerostin facilitator activity. Immunohistochemistry demonstrated that LRP4 protein is present in human and rodent osteoblasts and osteocytes, both presumed target cells of sclerostin action. Silencing of LRP4 by lentivirus-mediated shRNA delivery blocked sclerostin inhibitory action on in vitro bone mineralization. Notably, we identified two mutations in LRP4 (R1170W and W1186S) in patients suffering from bone overgrowth. We found that these mutations impair LRP4 interaction with sclerostin and its concomitant sclerostin facilitator effect. Together these data indicate that the interaction of sclerostin with LRP4 is required to mediate the inhibitory function of sclerostin on bone formation, thus identifying a novel role for LRP4 in bone.
The retinoic acid-related orphan receptor alpha (RORalpha) is an orphan member of the subfamily 1 of nuclear hormone receptors. No X-ray structure of RORalpha has been described so far, and no ligand has been identified. We describe the first crystal structure of the ligand binding domain (LBD) of RORalpha, at 1.63 A resolution. This structure revealed a ligand present in the ligand binding pocket (LBP), which was identified by X-ray crystallography as cholest-5-en-3beta-ol (cholesterol). Moreover, RORalpha transcriptional activity could be modulated by changes in intracellular cholesterol level or mutation of residues involved in cholesterol binding. These findings suggest that RORalpha could play a key role in the regulation of cholesterol homeostasis and thus represents an important drug target in cholesterol-related diseases.
SignificanceWe recently reported that activin type II receptors (ActRIIs) blockade using bimagrumab could positively impact muscle wasting in mice and humans. However, the specific role of each individual ActRII at regulating adult muscle mass had not been clarified. Here, we highlight the importance of concomitant neutralization of both ActRIIs in controlling muscle mass. Through comparison with single specificity antibodies, we uncover unique features related to bimagrumab and its neutralizing interactions with both ActRIIA and ActRIIB at the structural and cellular levels and in vivo in adult mice. The need for simultaneous engagement and neutralization of both ActRIIs to generate a strong skeletal muscle response confers unique therapeutic potential to bimagrumab, in the context of muscle wasting conditions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.