Multiple myeloma is an incurable plasma cell neoplasia characterized by the production of large amounts of monoclonal immunoglobulins.
BackgroundThe HIV-1 p6 Gag protein regulates the final abscission step of nascent virions from the cell membrane by the action of two late assembly (L-) domains. Although p6 is located within one of the most polymorphic regions of the HIV-1 gag gene, the 52 amino acid peptide binds at least to two cellular budding factors (Tsg101 and ALIX), is a substrate for phosphorylation, ubiquitination, and sumoylation, and mediates the incorporation of the HIV-1 accessory protein Vpr into viral particles. As expected, known functional domains mostly overlap with several conserved residues in p6. In this study, we investigated the importance of the highly conserved serine residue at position 40, which until now has not been assigned to any known function of p6.ResultsConsistently with previous data, we found that mutation of Ser-40 has no effect on ALIX mediated rescue of HIV-1 L-domain mutants. However, the only feasible S40F mutation that preserves the overlapping pol open reading frame (ORF) reduces virus replication in T-cell lines and in human lymphocyte tissue cultivated ex vivo. Most intriguingly, L-domain mediated virus release is not dependent on the integrity of Ser-40. However, the S40F mutation significantly reduces the specific infectivity of released virions. Further, it was observed that mutation of Ser-40 selectively interferes with the cleavage between capsid (CA) and the spacer peptide SP1 in Gag, without affecting cleavage of other Gag products. This deficiency in processing of CA, in consequence, led to an irregular morphology of the virus core and the formation of an electron dense extra core structure. Moreover, the defects induced by the S40F mutation in p6 can be rescued by the A1V mutation in SP1 that generally enhances processing of the CA-SP1 cleavage site.ConclusionsOverall, these data support a so far unrecognized function of p6 mediated by Ser-40 that occurs independently of the L-domain function, but selectively affects CA maturation and virus core formation, and consequently the infectivity of released virions.
Endogenous peptides presented by MHC class I (MHC-I) molecules are mostly derived from de novo synthesized, erroneous proteins, so-called defective ribosomal products (DRiPs), which are rapidly degraded via the ubiquitin–proteasome pathway. We have previously shown that the HIV-1 Gag protein represents a bona fide substrate for the DRiP pathway and that the amount of Gag-DRiPs can be enhanced by the introduction of an N-end rule degradation signal, leading to increased MHC-I presentation and immunogenicity of Gag. Based on these findings, we sought to identify a naturally occurring sequence motif within Gag that regulates its entry into the DRiP pathway. As the PTAP late assembly domain motif in the C-terminal p6 domain of Gag has been shown to negatively regulate the ubiquitination of Gag, we analyzed the correlation between ubiquitination and MHC-I presentation of PTAP-deficient Gag. Intriguingly, mutation of PTAP not only reduces the release of virus-like particles, but also increases ubiquitination of Gag and, consistently, enhances MHC-I presentation of a Gag-derived epitope. Although the half-life of the PTAP mutant was only mildly reduced, the entry into the DRiP pathway was significantly increased, as demonstrated by short-term pulse-chase analyses under proteasome inhibition. Collectively, these results indicate that, besides driving virus release, the PTAP motif regulates the entry of Gag into the DRiP pathway and, thus, into the MHC-I pathway. Although there are no naturally occurring PTAP mutants of HIV-1, mutations of PTAP might enhance the immunogenicity of Gag and, thus, be considered for the improvement of vaccine development.
The main source for endogenous peptides presented by the MHC class I (MHC-I) pathway are de novo-synthesized proteins which are degraded via the ubiquitin proteasome pathway. Different MHC-I Ag pools can be distinguished: first, short-lived defective ribosomal products, which are degraded in concert with or shortly after their synthesis, and, second, functional proteins that enter the standard protein life cycle. To compare the contribution of these two Ag sources to the generation of MHC-I-presented peptides, we established murine cell lines which express as a model Ag the HIV-1 Gag polyprotein fused to ubiquitin (Ub) carrying the epitope SIINFEKL (SL). Gag was expressed either in its wild-type form (UbMGagSL) or as a variant UbRGagSL harboring an N-end rule degron signal. Although UbRGagSL displayed wild-type protein stability, its inherent defective ribosomal products rate observed after proteasome shutdown was increased concomitant with enhanced presentation of the SL epitope. In addition, UbRGagSL induces enhanced T cell stimulation of SL-specific B3Z hybridoma cells as measured in vitro and of adoptively transferred TCR-transgenic OT-1 T cells in vivo. Furthermore, an elevated frequency of SL-specific T cells was detected by IFN-γ ELISPOT after immunization of naive C57BL/6 mice with UbRGagSL/EL4 cells. These results further underline the role of the defective ribosomal product pathway in adaptive immunity.
Because neuronal nitric oxide synthase (nNOS) has a well-known impact on arteriolar blood flow in skeletal muscle, we compared the ultrastructure and the hemodynamics of/in the ensuing capillaries in the extensor digitorum longus (EDL) muscle of male nNOS-knockout (KO) mice and wild-type (WT) littermates. The capillary-to-fiber (C/F) ratio (-9.1%) was lower (P ≤ 0.05) in the nNOS-KO mice than in the WT mice, whereas the mean cross-sectional fiber area (-7.8%) and the capillary density (-3.1%) varied only nonsignificantly (P > 0.05). Morphometrical estimation of the area occupied by the capillaries as well as the volume and surface densities of the subcellular compartments differed nonsignificantly (P > 0.05) between the two strains. Intravital microscopy revealed neither the capillary diameter (+3% in nNOS-KO mice vs. WT mice) nor the mean velocity of red blood cells in EDL muscle (+25% in nNOS-KO mice vs. WT mice) to significantly vary (P > 0.05) between the two strains. The calculated shear stress in the capillaries was likewise nonsignificantly different (3.8 ± 2.2 dyn/cm² in nNOS-KO mice and 2.1 ± 2.2 dyn/cm² in WT mice; P > 0.05). The mRNA levels of vascular endothelial growth factor (VEGF)-A were lower in the EDL muscle of nNOS-KO mice than in the WT littermates (-37%; P ≤ 0.05), whereas mRNA levels of VEGF receptor-2 (VEGFR-2) (-11%), hypoxia inducible factor-1α (+9%), fibroblast growth factor-2 (-14%), and thrombospondin-1 (-10%) differed nonsignificantly (P > 0.05). Our findings support the contention that VEGF-A mRNA expression and C/F-ratio but not the ultrastructure or the hemodynamics of/in capillaries in skeletal muscle at basal conditions depend on the expression of nNOS.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.