Microfluidic systems are capillary networks of varying complexity fabricated originally in silicon, but nowadays in glass and polymeric substrates. Flow of liquid is mainly controlled by use of electroosmotic effects, i.e. application of electric fields, in addition to pressurized flow, i.e. application of pressure or vacuum. Because electroosmotic flow rates depend on the charge densities on the walls of capillaries, they are influenced by substrate material, fabrication processes, surface pretreatment procedures, and buffer additives. Microfluidic systems combine the properties of capillary electrophoretic systems and flow-through analytical systems, and thus biochemical analytical assays have been developed utilizing and integrating both aspects. Proteins, peptides, and nucleic acids can be separated because of their different electrophoretic mobility; detection is achieved with fluorescence detectors. For protein analysis, in particular, interfaces between microfluidic chips and mass spectrometers were developed. Further levels of integration of required sample-treatment steps were achieved by integration of protein digestion by immobilized trypsin and amplification of nucleic acids by the polymerase chain reaction. Kinetic constants of enzyme reactions were determined by adjusting different degrees of dilution of enzyme substrates or inhibitors within a single chip utilizing mainly the properties of controlled dosing and mixing liquids within a chip. For analysis of kinase reactions, however, a combination of a reaction step (enzyme with substrate and inhibitor) and a separation step (enzyme substrate and reaction product) was required. Microfluidic chips also enable separation of analytes from sample matrix constituents, which can interfere with quantitative determination, if they have different electrophoretic mobilities. In addition to analysis of nucleic acids and enzymes, immunoassays are the third group of analytical assays performed in microfluidic chips. They utilize either affinity capillary electrophoresis as a homogeneous assay format, or immobilized antigens or antibodies in heterogeneous assays with serial supply of reagents and washing solutions.
A biosensor for fructose determination was used as basis of an assay for the determination of glucosyltransferase (GTF) activities and applied to monitoring recombinant enzyme production. GTFs catalyze the synthesis of glucans from sucrose leading to the release of fructose. Specific fructose determinations in the microM concentration range were achieved with a fructose electrode based on fructose dehydrogenase, which was immobilized on a screen-printed platinum electrode. This electrode was used as basis of the new assay for GTF activity determinations. Depending on the amount of enzyme, the assay was completed within 15-30 min compared to 1-2 h for the traditional photometric assay. From the amount of fructose released in a given reaction time, GTF activities were determined down to approx. 20 U/L. Even unpurified samples from a recombinant GTF-S production process could be analyzed without any problems, and a good correlation was obtained to data obtained from the photometric assay. Analysis of samples from cultures of various rGTF-S-producing recombinant E. coli strains grown on different media with SDS-PAGE and with the new assay identified the same strain and culture medium as optimum for recombinant GTF-S production.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.