The filamentous fungus Aspergillus niger is widely exploited by the fermentation industry for the production of enzymes and organic acids, particularly citric acid. We sequenced the 33.9-megabase genome of A. niger CBS 513.88, the ancestor of currently used enzyme production strains. A high level of synteny was observed with other aspergilli sequenced. Strong function predictions were made for 6,506 of the 14,165 open reading frames identified. A detailed description of the components of the protein secretion pathway was made and striking differences in the hydrolytic enzyme spectra of aspergilli were observed. A reconstructed metabolic network comprising 1,069 unique reactions illustrates the versatile metabolism of A. niger. Noteworthy is the large number of major facilitator superfamily transporters and fungal zinc binuclear cluster transcription factors, and the presence of putative gene clusters for fumonisin and ochratoxin A synthesis.
Different species of microorganisms including yeasts, filamentous fungi and bacteria have been used in the past 25 years for the controlled production of foreign proteins of scientific, pharmacological or industrial interest. A major obstacle for protein production processes and a limit to overall success has been the abundance of misfolded polypeptides, which fail to reach their native conformation. The presence of misfolded or folding-reluctant protein species causes considerable stress in host cells. The characterization of such adverse conditions and the elicited cell responses have permitted to better understand the physiology and molecular biology of conformational stress. Therefore, microbial cell factories for recombinant protein production are depicted here as a source of knowledge that has considerably helped to picture the extremely rich landscape of in vivo protein folding, and the main cellular players of this complex process are described for the most important cell factories used for biotechnological purposes.
The Escherichia coli K-12 strain TG1 was grown at 28 6C in aerobic glucose-limited continuous cultures at dilution rates ranging from 0?044 to 0?415 h "1 . The rates of biomass formation, the specific rates of glucose, ammonium and oxygen uptake and the specific carbon dioxide evolution rate increased linearly with the dilution rate up to 0?3 h "1 . At dilution rates between 0?3 h "1 and 0?4 h "1 , a strong deviation from the linear increase to lower specific oxygen uptake and carbon dioxide evolution rates occurred. The biomass formation rate and the specific glucose and ammonium uptake rates did not deviate that strongly from the linear increase up to dilution rates of 0?4 h "1 . An increasing percentage of glucose carbon flow towards biomass determined by a reactor mass balance and a decreasing specific ATP production rate concomitant with a decreasing adenylate energy charge indicated higher energetic efficiency of carbon substrate utilization at higher dilution rates. Estimation of metabolic fluxes by a stoichiometric model revealed an increasing activity of the pentose phosphate pathway and a decreasing tricarboxylic acid cycle activity with increasing dilution rates, indicative of the increased NADPH and precursor demand for anabolic purposes at the expense of ATP formation through catabolic activities. Thus, increasing growth rates first result in a more energy-efficient use of the carbon substrate for biomass production, i.e. a lower portion of the carbon substrate is channelled into the respiratory, energy-generating pathway. At dilution rates above 0?4 h "1 , close to the wash-out point, respiration rates dropped sharply and accumulation of glucose and acetic acid was observed. Energy generation through acetate formation yields less ATP compared with complete oxidation of the sugar carbon substrate, but is the result of maximized energy generation under conditions of restrictions in the tricarboxylic acid cycle or in respiratory NADH turnover. Thus, the data strongly support the conclusion that, in aerobic glucose-limited continuous cultures of E. coli TG1, two different carbon limitations occur: at low dilution rates, cell growth is limited by cell-carbon supply and, at high dilution rates, by energy-carbon supply.
Strong production of recombinant proteins interferes with cellular processes in many ways. Drainage of precursors and energy urges the cell to readjust metabolic fluxes and enzyme composition, stress responses are induced, and hence the cellular activity is shifted from growth to reorganisation of biomass. This may result in inhibition of growth or low level of product accumulation. The extent of the bacterial stress response is determined by the specific properties of the recombinant protein, and by the rates of transcription and translation. Taking into account the capacities of the host for protein processing and physiological adaptation, production schemes can be developed that enhance volumetric productivity and sustainability of the process.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.