The Gram negative bacterium Vibrio cholerae is the causative agent of the secretory diarrheal disease cholera, which has traditionally been classified as a noninflammatory disease. However, several recent reports suggest that a V. cholerae infection induces an inflammatory response in the gastrointestinal tract indicated by recruitment of innate immune cells and increase of inflammatory cytokines. In this study, we describe a colonization defect of a double extracellular nuclease V. cholerae mutant in immunocompetent mice, which is not evident in neutropenic mice. Intrigued by this observation, we investigated the impact of neutrophils, as a central part of the innate immune system, on the pathogen V. cholerae in more detail. Our results demonstrate that V. cholerae induces formation of neutrophil extracellular traps (NETs) upon contact with neutrophils, while V. cholerae in return induces the two extracellular nucleases upon presence of NETs. We show that the V. cholerae wild type rapidly degrades the DNA component of the NETs by the combined activity of the two extracellular nucleases Dns and Xds. In contrast, NETs exhibit prolonged stability in presence of the double nuclease mutant. Finally, we demonstrate that Dns and Xds mediate evasion of V. cholerae from NETs and lower the susceptibility for extracellular killing in the presence of NETs. This report provides a first comprehensive characterization of the interplay between neutrophils and V. cholerae along with new evidence that the innate immune response impacts the colonization of V. cholerae in vivo. A limitation of this study is an inability for technical and physiological reasons to visualize intact NETs in the intestinal lumen of infected mice, but we can hypothesize that extracellular nuclease production by V. cholerae may enhance survival fitness of the pathogen through NET degradation.
Enteric infections induced by pathogens like Vibrio cholerae and enterotoxigenic Escherichia coli (ETEC) remain a massive burden in developing countries with increasing morbidity and mortality rates. Previously, we showed that the immunization with genetically detoxified outer membrane vesicles (OMVs) derived from V. cholerae elicits a protective immune response based on the generation of O antigen antibodies, which effectively block the motility by binding to the sheathed flagellum. In this study, we investigated the potential of lipopolysaccharide (LPS)-modified and toxin negative OMVs isolated from V. cholerae and ETEC as a combined OMV vaccine candidate. Our results indicate that the immunization with V. cholerae or ETEC OMVs induced a species-specific immune response, whereas the combination of both OMV species resulted in a high-titer, protective immune response against both pathogens. Interestingly, the immunization with V. cholerae OMVs alone resulted in a so far uncharacterized and cholera toxin B-subunit (CTB) independent protection mechanism against an ETEC colonization. Furthermore, we investigated the potential use of V. cholerae OMVs as delivery vehicles for the heterologously expression of the ETEC surface antigens, CFA/I, and FliC. Although we induced a detectable immune response against both heterologously expressed antigens, none of these approaches resulted in an improved protection compared to a simple combination of V. cholerae and ETEC OMVs. Finally, we expanded the current protection model from V. cholerae to ETEC by demonstrating that the inhibition of motility via anti-FliC antibodies represents a relevant protection mechanism of an OMV-based ETEC vaccine candidate in vivo.
SummaryHaemophilus influenzae is a Gram-negative pathogen colonizing the upper respiratory tract mucosa. H. influenzae is one of several human-restricted bacteria, which bind to carcinoembryonic antigen-related cell adhesion molecules (CEACAMs) on the epithelium leading to bacterial uptake by the eukaryotic cells. Adhesion to CEACAMs is thought to be mediated by the H. influenzae outer membrane protein (OMP) P5. However, CEACAMs still bound to H. influenzae lacking OMP P5 expression, and soluble CEACAM receptor ectodomains failed to bind to OMP P5, when heterologously expressed in Escherichia coli. Screening of a panel of H. influenzae OMP mutants revealed that lack of OMP P1 completely abrogated CEACAM binding and supressed CEACAM-mediated engulfment of H. influenzae by epithelial cells. Moreover, ectopic expression of OMP P1 in E. coli was sufficient to induce CEACAM binding and to promote attachment to and internalization into CEACAM-expressing cells. Interestingly, OMP P1 selectively recognizes human CEACAMs, but not homologs from other mammals and this binding preference is preserved upon expression in E. coli. Together, our data identify OMP P1 as the bona fide CEACAM-binding invasin of H. influenzae. This is the first report providing evidence for an involvement of the major OMP P1 of H. influenzae in pathogenesis.
Background Melioidosis, caused by Burkholderia pseudomallei , is a severe infectious disease with high mortality rates, but is under-recognized worldwide. In endemic areas, there is a great need for simple, low-cost and rapid diagnostic tools. In a previous study we showed, that a protein multiplex array with 20 B . pseudomallei -specific antigens detects antibodies in melioidosis patients with high sensitivity and specificity. In a subsequent study the high potential of anti- B . pseudomallei antibody detection was confirmed using a rapid Hcp1 single protein-based assay. Our protein array also showed that the antibody profile varies between patients, possibly due to a combination of host factors but also antigen variations in the infecting B . pseudomallei strains. The aim of this study was to develop a rapid test, combining Hcp1 and the best performing antigens BPSL2096, BPSL2697 and BPSS0477 from our previous study, to take advantage of simultaneous antibody detection. Methods and principal findings The 4-plex dipstick was validated with sera from 75 patients on admission plus control groups, achieving 92% sensitivity and 97–100% specificity. We then re-evaluated melioidosis sera with the 4-plex assay that were previously misclassified by the monoplex Hcp1 rapid test. 12 out of 55 (21.8%) false-negative samples were positive in our new dipstick assay. Among those, 4 sera (7.3%) were Hcp1 positive, whereas 8 (14.5%) sera remained Hcp1 negative but gave a positive reaction with our additional antigens. Conclusions Our dipstick rapid test represents an inexpensive, standardized and simple diagnostic tool with an improved serodiagnostic performance due to multiplex detection. Each additional band on the test strip makes a false-positive result more unlikely, contributing to its reliability. Future prospective studies will seek to validate the gain in sensitivity and specificity of our multiplex rapid test approach in different melioidosis patient cohorts.
The facultative human pathogen Vibrio cholerae transits between the gastrointestinal tract of its host and aquatic reservoirs. V. cholerae adapts to different situations by the timely coordinated expression of genes during its life cycle. We recently identified a subclass of genes that are induced at late stages of infection. Initial characterization demonstrated that some of these genes facilitate the transition of V. cholerae from host to environmental conditions. Among these genes are uptake systems lacking detailed characterization or correct annotation. In this study, we comprehensively investigated the function of the VCA0682-to-VCA0687 gene cluster, which was previously identified as in vivo induced. The results presented here demonstrate that the operon encompassing open reading frames VCA0685 to VCA0687 encodes an ABC transport system for hexose-6-phosphates with K m values ranging from 0.275 to 1.273 M for glucose-6P and fructose-6P, respectively. Expression of the operon is induced by the presence of hexose-6P controlled by the transcriptional activator VCA0682, representing a UhpA homolog. Finally, we provide evidence that the operon is essential for the utilization of hexose-6P as a C and P source. Thereby, a physiological role can be assigned to hexose-6P uptake, which correlates with increased fitness of V. cholerae after a transition from the host into phosphate-limiting environments.T he life cycle of the facultative human pathogen Vibrio cholerae is marked by repetitive transitions between aquatic environments and the host gastrointestinal tract. Besides many other variable conditions, V. cholerae has to adjust to different qualities and quantities of nutrient sources. This variability is emphasized by the fact that utilization of nutrients under laboratory conditions, such as in full broth or a chemically defined minimal medium, represents no growth limitation for clinical V. cholerae isolates (1).In the open sea, bacteria such as V. cholerae face C, N, and P limitation and are restricted to limited nutrients on a picomolar or nanomolar scale, whereby substrates become available and accessible only in specific habitats (2). Therefore, marine bacteria are found close to organic particles ranging from micrometer-to millimeter-sized aggregates. These organic particles derive from different sources, such as lysed or dead phytoplankton, zooplankton, or fecal pellets. They deliver organic and inorganic substrates in concentrations that are up to 4 orders of magnitude greater than those found in particle-free open seawater (for a recent review, see reference 2). Therefore, many plants and animals in the ocean serve as microbial niches for V. cholerae (3-6). For example, copepods or other crustaceans contain or are covered with chitin, a ,1-4-linked polymer of 2-acetamido-2-deoxy--D-glucopyranoside (GlcNAc) n and its deacetylated form, chitosan. These substrates are utilized by Vibrio sp. as C and N sources (7-9). In addition, biofilm formation on chitinous surfaces plays a crucial role in V. choler...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.