Helicobacter pylori (Hp) strains that carry the cag type IV secretion system (cag-T4SS) to inject the cytotoxin-associated antigen A (CagA) into host cells are associated with peptic ulcer disease and gastric adenocarcinoma. CagA translocation by Hp is mediated by β1 integrin interaction of the cag-T4SS. However, other cellular receptors or bacterial outer membrane adhesins essential for this process are unknown. Here, we identify the HopQ protein as a genuine Hp adhesin, exploiting defined members of the carcinoembryonic antigen-related cell adhesion molecule family (CEACAMs) as host cell receptors. HopQ binds the amino-terminal IgV-like domain of human CEACAM1, CEACAM3, CEACAM5 or CEACAM6 proteins, thereby enabling translocation of the major pathogenicity factor CagA into host cells. The HopQ-CEACAM interaction is characterized by a remarkably high affinity (K from 23 to 268 nM), which is independent of CEACAM glycosylation, identifying CEACAMs as bona fide protein receptors for Hp. Our data suggest that the HopQ-CEACAM interaction contributes to gastric colonization or Hp-induced pathologies, although the precise role and functional consequences of this interaction in vivo remain to be determined.
Carcinoembryonic antigen-related cell adhesion molecules (CEACAMs) comprise a group of immunoglobulin-related vertebrate glycoproteins. Several family members, including CEACAM1, CEA, and CEACAM6, are found on epithelial tissues throughout the human body. As they modulate diverse cellular functions, their signaling capacity is in the focus of current research. In this review we will summarize the knowledge about common signaling processes initiated by epithelial CEACAMs and suggest a model of signal transduction by CEACAM family members lacking significant cytoplasmic domains. As pathogenic and non-pathogenic bacteria exploit these receptors during mucosal colonization, we try to highlight the connection between CEACAMs, microbes, and cellular responses. Special emphasis in this context is placed on the functional interplay between CEACAMs and integrins that influences matrix adhesion of epithelial cells. The cooperation between these two receptor families provides an intriguing example of the fine tuning of cellular responses and their manipulation by specialized microorganisms.
SummaryHaemophilus influenzae is a Gram-negative pathogen colonizing the upper respiratory tract mucosa. H. influenzae is one of several human-restricted bacteria, which bind to carcinoembryonic antigen-related cell adhesion molecules (CEACAMs) on the epithelium leading to bacterial uptake by the eukaryotic cells. Adhesion to CEACAMs is thought to be mediated by the H. influenzae outer membrane protein (OMP) P5. However, CEACAMs still bound to H. influenzae lacking OMP P5 expression, and soluble CEACAM receptor ectodomains failed to bind to OMP P5, when heterologously expressed in Escherichia coli. Screening of a panel of H. influenzae OMP mutants revealed that lack of OMP P1 completely abrogated CEACAM binding and supressed CEACAM-mediated engulfment of H. influenzae by epithelial cells. Moreover, ectopic expression of OMP P1 in E. coli was sufficient to induce CEACAM binding and to promote attachment to and internalization into CEACAM-expressing cells. Interestingly, OMP P1 selectively recognizes human CEACAMs, but not homologs from other mammals and this binding preference is preserved upon expression in E. coli. Together, our data identify OMP P1 as the bona fide CEACAM-binding invasin of H. influenzae. This is the first report providing evidence for an involvement of the major OMP P1 of H. influenzae in pathogenesis.
Attachment to the host mucosa is a key step in bacterial pathogenesis. On the apical surface of epithelial cells, members of the human carcinoembryonic antigen (CEA) family are abundant glycoproteins involved in cell-cell adhesion and modulation of cell signaling. Interestingly, several gram-negative bacterial pathogens target these receptors by specialized adhesins. The prototype of a CEACAM-binding pathogen, Neisseria gonorrhoeae, utilizes colony opacity associated (Opa) proteins to engage CEA, as well as the CEA-related cell adhesion molecules CEACAM1 and CEACAM6 on human epithelial cells. By heterologous expression of neisserial Opa proteins in non-pathogenic E. coli we find that the Opa protein-CEA interaction is sufficient to alter gene expression, to increase integrin activity and to promote matrix adhesion of infected cervical carcinoma cells and immortalized vaginal epithelial cells in vitro. These CEA-triggered events translate in suppression of exfoliation and improved colonization of the urogenital tract by Opa protein-expressing E. coli in CEA-transgenic compared to wildtype mice. Interestingly, uropathogenic E. coli expressing an unrelated CEACAM-binding protein of the Afa/Dr adhesin family recapitulate the in vitro and in vivo phenotype. In contrast, an isogenic strain lacking the CEACAM-binding adhesin shows reduced colonization and does not suppress epithelial exfoliation. These results demonstrate that engagement of human CEACAMs by distinct bacterial adhesins is sufficient to blunt exfoliation and to promote host infection. Our findings provide novel insight into mucosal colonization by a common UPEC pathotype and help to explain why human CEACAMs are a preferred epithelial target structure for diverse gram-negative bacteria to establish a foothold on the human mucosa.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.