Cardio-facio-cutaneous (CFC) syndrome, Noonan syndrome (NS), and Costello syndrome (CS) are clinically related developmental disorders that have been recently linked to mutations in the RAS/MEK/ERK signalling pathway. This study was a mutation analysis of the KRAS, BRAF, MEK1 and MEK2 genes in a total of 130 patients (40 patients with a clinical diagnosis of CFC, 20 patients without HRAS mutations from the French Costello family support group, and 70 patients with NS without PTPN11 or SOS1 mutations). BRAF mutations were found in 14/40 (35%) patients with CFC and 8/20 (40%) HRAS-negative patients with CS. KRAS mutations were found in 1/40 (2.5%) patients with CFC, 2/20 (10%) HRAS-negative patients with CS and 4/70 patients with NS (5.7%). MEK1 mutations were found in 4/40 patients with CFC (10%), 4/20 (20%) HRAS-negative patients with CS and 3/70 (4.3%) patients with NS, and MEK2 mutations in 4/40 (10%) patients with CFC. Analysis of the major phenotypic features suggests significant clinical overlap between CS and CFC. The phenotype associated with MEK mutations seems less severe, and is compatible with normal mental development. Features considered distinctive for CS were also found to be associated with BRAF or MEK mutations. Because of its particular cancer risk, the term "Costello syndrome" should only be used for patients with proven HRAS mutation. These results confirm that KRAS is a minor contributor to NS and show that MEK is involved in some cases of NS, demonstrating a phenotypic continuum between the clinical entities. Although some associated features appear to be characteristic of a specific gene, no simple rule exists to distinguish NS from CFC easily.
Bardet-Biedl syndrome (BBS) is a genetically heterogeneous ciliopathy. Although nine BBS genes have been cloned, they explain only 40-50% of the total mutational load. Here we report a major new BBS locus, BBS10, that encodes a previously unknown, rapidly evolving vertebrate-specific chaperonin-like protein. We found BBS10 to be mutated in about 20% of an unselected cohort of families of various ethnic origins, including some families with mutations in other BBS genes, consistent with oligogenic inheritance. In zebrafish, mild suppression of bbs10 exacerbated the phenotypes of other bbs morphants.
Background: Costello syndrome (CS) is a rare multiple congenital abnormality syndrome, associated with failure to thrive and developmental delay. One of the more distinctive features in childhood is the development of facial warts, often nasolabial and in other moist body surfaces. Individuals with CS have an increased risk of malignancy, suggested to be about 17%. Recently, mutations in the HRAS gene on chromosome 11p13.3 have been found to cause CS. Methods: We report here the results of HRAS analysis in 43 individuals with a clinical diagnosis of CS. Results: Mutations were found in 37 (86%) of patients. Analysis of parental DNA samples was possible in 16 cases for both parents and in three cases for one parent, and confirmed the mutations as de novo in all of these cases. Three novel mutations (G12C, G12E, and K117R) were found in five cases. Conclusions: These results confirm that CS is caused, in most cases, by heterozygous missense mutations in the proto-oncogene HRAS. Analysis of the major phenotypic features by mutation suggests a potential correlation between malignancy risk and genotype, which is highest for patients with an uncommon (G12A) substitution. These results confirm that mutation testing for HRAS is a reliable diagnostic test for CS.
The acronym CHARGE refers to a syndrome of unknown cause. Here we report on 47 CHARGE patients evaluated for the frequency of major anomalies, namely coloboma (79%), heart malformation (85%), choanal atresia (57%), growth and/or mental retardation (100%), genital anomalies (34%), ear anomalies (91%), and/or deafness (62%). In addition, we comment on anomalies observed very frequently in neonates and infants with the CHARGE syndrome, including, minor facial anomalies, neonatal brain stem dysfunction with cranial nerve palsy, and, mostly, internal ear anomalies such as semicircular canal hypoplasia that were found in each patient that could be tested. We propose several criteria for poor survival including male gender, central nervous system and/or oesophageal malformations, and bilateral choanal atresia. No predictive factor regarding developmental prognosis could be identified in our series. A significantly higher mean paternal age at conception together with concordance in monozygotic twins and the existence of rare familial cases support the role of genetic factors such as de novo mutation of a dominant gene or subtle sub-microscopic chromosome rearrangement. Finally, the combination of malformations in CHARGE syndrome strongly supports the view that this multiple congenital anomalies/mental retardation syndrome is a polytopic developmental field defect involving the neural tube and the neural crests cells.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.