This study provides an alternative solution for the bioremediation of a recalcitrant pharmaceutical micropollutant. Clofibric acid (CLA) was chosen as target molecule, because of its environmental persistence and resistance to wastewater treatment technologies. The aim of this study was to investigate the potential of a phenol resistant Pseudomonas aeruginosa strain isolated from the activated sludge to degrade CLA. In order to evaluate the effect of acclimation process with glucose as carbon co-substrate, two protocols were carried out, in which the transfer of the inoculum is carried out either in the exponential growth phase or in the decline phase. The results showed a removal efficiency of CLA of 35% when cells in the decline phase were used for inoculation. In contrast, a very low removal yield (10%) was achieved when cells harvested in the exponential phase were used as inoculum. This work is the first one reporting on the capability of this bacterium to remove this drug. The obtained data showed that the isolated strain is able to degrade target molecule and might be a promising agent for the elimination of this refractory compound.
With its unique structure, graphene exhibits a number of outstanding mechanical, optical, and electronic properties, thus promising several potential applications. In the current work, graphene sheets were prepared from graphite and surface‐modified via an acid treatment. The synthesized material physicochemical properties were assessed using X‐ray diffraction, nitrogen adsorption and BET analysis, transmission electron microscopy, and Raman as well as X‐ray photoelectron spectroscopy techniques. The ability of the surface‐modified graphene in the adsorptive elimination of Pb(II) and Cd(II) cations from aqueous solutions was investigated batchwise under numerous experimental conditions. A pseudo‐second order kinetic model described adequately the adsorption kinetic profiles. The adsorption isotherms were compared to the Langmuir and Freundlich models. It was found that for both heavy metal cations, adsorption isotherms were reasonably described by Langmuir model equation. Maximum adsorption capacities reached 0.946 and 1.779 mmol ion/g for Pb(II) and Cd(II), respectively.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.