Sulfadiazine (SD) and sulfamethoxazole (SMX) are widely used sulfonamide antibiotics, which are present as contaminants in surface waters and are known to undergo phototransformation. This kinetic study was conducted to identify the processes responsible for their phototransformation in sunlit surface waters. Water samples from the Thur River (Switzerland) and from a pilot wastewater treatment plant, as well as aqueous solutions of two well-characterized natural dissolved organic matter (DOM) extracts, namely Suwannee River and Pony Lake fulvic acids (SRFA, PLFA), were examined. Both sulfonamides were found to undergo direct and indirect phototransformation, with contributions of excited triplet states of DOM and of effluent organic matter (EfOM) and possibly of hydroxyl radical and other unidentified reactive species. Under simulated sunlight, SMX mainly reacted through direct phototransformation, with a certain contribution of indirect phototransformation occurring for a wastewater effluent. The behavior of SD was found to be more diverse. For river waters, wastewater effluents and PLFA solutions, indirect phototransformation was predominant, while for SRFA solutions direct phototransformation prevailed. The rates of phototransformation of SD were interpreted as the result of a complex interplay between the photosensitizing and the inhibitory effect of DOM/EfOM, with an additional component related to the nitrite ion as a source of photoproduced hydroxyl radical. For typical conditions found in surface waters comparable to the Thur River, phototransformation half-lives on the order of 3-13 d were estimated for the two studied sulfonamides.
Benzotriazoles (BTs) and benzothiazoles (BTHs) are extensively used chemicals found in a wide range of household and industrial products. They are chemically stable and are therefore ubiquitous in the aquatic environment. The present study focuses on the potential of ultraviolet (UV) irradiation, alone or in combination with hydrogen peroxide (H2O2), to remove BTs and BTHs from contaminated waters. Six compounds, three out of each chemical class, were investigated using a low-pressure mercury lamp (main emission at 254 nm) as the radiation source. Initially, the direct phototransformation kinetics and quantum yield in dilute aqueous solution was studied over the pH range of 4-12. All BTs and BTHs, except for benzothiazole, exhibited pH-dependent direct phototransformation rate constants and quantum yields in accordance to their acid-base speciation (7.1 < pKa < 8.9). The direct phototransformation quantum yields (9.0 × 10(-4)-3.0 × 10(-2) mol einstein(-1)), as well as the photon fluence-based rate constants (1.2-48 m(2) einstein(-1)) were quite low. This suggests that UV irradiation alone is not an efficient method to remove BTs and BTHs from impacted waters. The second-order rate constants for the reaction of selected BTs and BTHs with the hydroxyl radical were also determined, and found to fall in the range of 5.1-10.8 × 10(9) M(-1) s(-1), which is typical for aromatic contaminants. Finally, the removal of BTs and BTHs was measured in wastewater and river water during application of UV irradiation or the advanced oxidation process UV/H2O2. The latter process provided an efficient removal, mostly due to the effect of the hydroxyl radical, that was comparable to other aromatic aquatic contaminants, in terms of energy requirement or treatment costs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.