Titanium-based implants are successfully used for various biomedical applications. However, in some cases, e.g. in dental implants, failures due to bacterial colonization are reported. Surface modification is a commonly proposed strategy to prevent infections. In this work, titanium oxide, naturally occurring on the surface of titanium, was modified by promoting the formation of a mixed titanium and zinc oxide, on the basis of the idea that zinc oxide on titanium surface may act as the zinc oxide used in pharmaceutical formulation for its lenitive and antibacterial effects.
The present work shows that it is possible to form a mixed titanium and zinc oxide on titanium surfaces, as shown by Scanning Electron Microscopy and XPS analysis. To this end titanium was preactivated by UV on crystalline titanium oxide, both in the anatase form or in the co-presence of anatase and rutile. By performing antibacterial assays, we provide evidence of a significant reduction in the viability of five streptococcal oral strains on titanium oxide surfaces modified with zinc.
In conclusion, this type of chemical modification of titanium oxide surfaces with zinc might be considered a new way to reduce the risk of bacterial colonization, increasing the lifetime of dental system applications.
The spontaneous formation of alkane phosphate self-assembled monolayers (SAMs) on titanium oxide was chosen as a tool to tailor the surface physicochemical properties in terms of nonspecific adsorption of proteins. For this aim, poly(ethylene glycol)-modified (PEG) alkane phosphate was codeposited with OH-terminated alkane phosphates. X-ray photoelectron spectroscopy and ellipsometry of the resulting mixed SAMs indicate that the PEG density can be controlled by varying the mole fraction of PEG-terminated phosphates in the solutions used during the deposition process, leading to surfaces with different degrees of protein resistance.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.