A new “omic” platform—Cosmetomics—that proves to be extremely simple and effective in terms of sample preparation and readiness for data acquisition/interpretation is presented. This novel approach employing Matrix-Assisted Laser Desorption/Ionization Mass Spectrometry Imaging (MALDI-MSI) for cosmetic analysis has proven to readily identify and quantify compounds of interest. It also allows full control of all the production phases, as well as of the final product, by integration of both analytical and statistical data. This work has focused on products of daily use, namely nail polish, lipsticks and eyeliners of multiple brands sold in the worldwide market.
A method for optimization of extraction of volatile compounds in Chardonnay wine was developed using headspace-solid phase microextraction (HS-SPME) and gas chromatography coupled with triple quadrupole tandem mass spectrometry (GC-MS/MS). Optimization of the HS-SPME conditions, temperature (T, ˚C) and extraction time (t, minutes), was carried out using a 2 2 factorial central composite rotational design (CCRD). Total area of chromatographic peaks of nineteen compounds was monitored in order to identify the best response and the data was collected on multiple reaction monitoring (MRM) mode. The mathematical model that describes the response surface for the CCRD was validated using the analysis of variance (ANO VA) with 95% of confidence level. This model showed a lack of fit based on mean square pure error ratios for each response, in which F calculated was 2.23 higher than F tabulated. Even though the models cannot be rigorously used to make quantitative predictions, the coefficients of the model, especially the linear ones, are useful for understanding systematic behaviour of the response values as a function of the factor levels. Multivariate statistical design can be used in optimization of HS-SPME extraction parameters with reduced number of experiments and can be useful in sampling method of volatile compounds of Chardonnay wines analysis by CG-MS/MS. The optimal condition achieved in this method was 30˚C and 45 minutes of extraction.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.