Our findings demonstrate that the targeted inhibition of complement component C5a reduces vascular leakage and neovascular area in laser-induced CNV in mice. NOX-D20 was proven to be an effective and safe agent that might be considered as a therapeutic candidate for CNV treatment. The deficiency of activated immune cells highlights promising new aspects in the pathology of choroidal neovascularization, and warrants further investigations.
The CD11b-HSVTK mouse is a feasible model for a local depletion of CD11b cells in the retina. Nevertheless, only a partial depletion of CD11b cells could be achieved compared to baseline data without any intravitreal injections. Our results did not reveal a significant reduction in CNV areas. In the light of previous knowledge, the potential influence of systemic immune cells on CNV formation might be more relevant than expected.
Using two different approaches to monitor MP/MG cells, our findings demonstrated that MP/MG concentrate within pathologically vascularized areas during OIR. We were able to clarify that reactive changes of CD11b cell distribution to OIR primarily occur in the deep retinal layers. Furthermore, we found the highest proportion of activated CD11b cells in regions with pathologic neovascularization processes. Our findings support previous reports about activated MP/MG guiding revascularization in avascular areas and playing a key role in the formation and regression of neovascular tufts.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.