BackgroundThe B-subunit of Shiga toxin (STxB) specifically binds to the glycosphingolipid Gb3 that is highly expressed on a number of human tumors and has been shown to target tumor cells in mouse models and ex vivo on primary colon carcinoma specimen.MethodsUsing a novel ex vivo STxB labeling (ESL) method we studied Gb3 expression in cytological specimens of primary human breast tumors from 107 patients, and in synchronous lymph node metastases from 20 patients. Fluorescent STxB was incubated with fine-needle aspiration (FNA) specimens, and Gb3 expression was evaluated by fluorescence microscopy. Furthermore, 11 patient-derived human breast cancer xenografts (HBCx) were evaluated for expression of Gb3 by ESL and FACS. In addition, the biodistribution of fluorescent STxB conjugate was studied after intravenous injection in a Gb3 positive HBCx model.ResultsGb3 expression was detected in 62 of 107 patients (57.9%), mainly in epithelial tumor cells. Gb3 positivity correlated with estrogen receptor expression (p ≤ 0.01), whereas absence of Gb3 expression in primary tumors was correlated with the presence of lymph node metastases (p ≤ 0.03). 65% of lymph node metastases were Gb3 positive and in 40% of tested patients, we observed a statistically significant increase of metastatic Gb3 expression (p ≤ 0.04). Using concordant ESL and flow cytometry analysis, 6 out of 11 HBCx samples were scored positive. Intravenous injections of fluorescent STxB into HBC xenografted mice showed preferential STxB accumulation in epithelial cells and cells with endothelial morphology of the tumor.ConclusionThe enhanced expression of Gb3 in primary breast carcinomas and its lymph node metastases indicate that the development of STxB-based therapeutic strategies is of interest in this pathology. Gb3 expressing HBCx can be used as a model for preclinical studies with STxB conjugates. Finally, the ESL technique on FNA represents a rapid and cost effective method for the stratification of patients in future clinical trials.
The present study demonstrates the targeting of ultrasound contrast agents to human xenograft tumors by exploiting the overexpression of the glycolipid Gb3 in neovasculature. To this end, microbubbles were functionalized with a natural Gb3 ligand, the B subunit of the Shiga toxin (STxB). The targeting of Gb3-expressing tumor cells by STxB microbubbles was first shown by flow cytometry and fluorescence microscopy. A significantly higher proportion of STxB microbubbles were associated with Gb3-expressing tumor cells compared to cells in which Gb3 expression was inhibited. Moreover, ultrasonic imaging of culture plates showed a 12 dB contrast enhancement in average backscattered acoustic intensity on the surface of Gb3-expressing cells compared to Gb3-negative cells. Also, a 18 dB contrast enhancement was found in favor of STxB microbubbles compared to unspecific microbubbles. Microbubble signal intensity in subcutaneous tumors in mice was more than twice as high after the injection of STxB-functionalized microbubbles compared to the injection of unspecific microbubbles. These in vitro and in vivo experiments demonstrated that STxB-functionalized microbubbles bind specifically to cells expressing the Gb3 glycolipid. The cell-binding moieties of toxins thus appear as a new group of ligands for angiogenesis imaging with ultrasound.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.