The first microstructured optical fiber-based sensor platform for aluminum ions using a surface-attached derivative of lumogallion (3), a known fluorescence-based indicator, has been fabricated. These fibers allow for strong evanescent field interactions with the surrounding media because of the small core size while also providing the potential for real-time and distributed measurements. The fluorescence response to aluminum ions was first demonstrated by applying the procedure to glass slides. This was achieved through the covalent attachment of the fluorophore to a polyelectrolyte-coated glass surface and then to the internal holes of a suspended-core microstructured optical fiber to give an effective aluminum sensor. Whereas the sensor platform reported is fabricated for aluminum, the approach is versatile, with applicability to the detection of other ions.
The new agreement specifically addresses what authors can do with different versions of their manuscript -e.g. use in theses and collections, teaching and training, conference presentations, sharing with colleagues, and posting on websites and repositories. The terms under which these uses can occur are clearly identified to prevent misunderstandings that could jeopardize final publication of a manuscript (Section II, Permitted Uses by Authors). Easy Reference User Guide Posting Accepted and Published Works on Websites and Repositories:A digital file of the Accepted Work and/or the Published Work may be made publicly available on websites or repositories (e.g. the Author's personal website, preprint servers, university networks or primary employer's institutional websites, third party institutional or subject-based repositories, and conference websites that feature presentations by the Author(s) based on the Accepted and/or the Published Work) under the following conditions:• It is mandated by the Author(s)' funding agency, primary employer, or, in the case of Author(s) employed in academia, university administration.• If the mandated public availability of the Accepted Manuscript is sooner than 12 months after online publication of the Published Work, a waiver from the relevant institutional policy should be sought. If a waiver cannot be obtained, the Author(s) may sponsor the immediate availability of the final Published Work through participation in the ACS AuthorChoice program-for information about this program see http://pubs.acs.org/page/policy/authorchoice/index.html.• If the mandated public availability of the Accepted Manuscript is not sooner than 12 months after online publication of the Published Work, the Accepted Manuscript may be posted to the mandated website or repository. The following notice should be included at the time of posting, or the posting amended as appropriate: "This document is the Accepted Manuscript version of a Published Work that appeared in final form in [JournalTitle], copyright © American Chemical Society after peer review and technical editing by the publisher. To access the final edited and published work see [insert ACS Articles on Request authordirected link to Published Work, see http://pubs.acs.org/page/policy/articlesonrequest/index.html]." • The posting must be for non-commercial purposes and not violate the ACS' "Ethical Guidelines to Publication of Chemical Research" (see http://pubs.acs.org/ethics).• Regardless of any mandated public availability date of a digital file of the final Published Work, Author(s) may make this file available only via the ACS AuthorChoice Program. For more information, see http://pubs.acs.org/page/policy/authorchoice/index.html. sensor provides a significant advantage in that it allows the use of nL sampling when compared to ICP-MS (mL) and . This work paves the way to a generic approach for developing surface-based ion sensors using a range of sensor molecules, which can be attached to a surface without the need for its chemical modifica...
The identification of a proper lead compound for fructose 1,6-bisphosphatase (FBPase) is a critical step in the process of developing novel therapeutics against type-2 diabetes. Herein, we have successfully generated a library of allosteric inhibitors against FBPase as potential anti-diabetic drugs, of which, the lead compound 1b was identified through utilizing a virtual high-throughput screening (vHTS) system, which we have developed. The thiazole-based core structure was synthesized via the condensation of α-bromo-keotnes with thioureas and substituents on the two aryl rings were varied. 4c was found to inhibit pig kidney FBPase approximately 5-fold better than 1b. In addition, we have also identified 10b, a tight binding fragment, which can be use for fragment-based drug design purposes.
A new biologically compatible Zn(II) sensor was fabricated by embedding a Zn(II) sensing spiropyran within the surface of a liposome derived from Escherichia coli lipids (LSP2). Solution-based experiments with increasing Zn(II) concentrations show improved aqueous solubility and sensitivity compared to the isolated spiropyran molecule (SP2). LSP2 is capable of sensing Zn(II) efflux from dying cells with preliminary data indicating that sensing is localized near the surface membrane of HEK 293 cells. Finally, LSP2 is suitable for development into a nanoliter-scale dip-sensor for Zn(II) using microstructured optical fiber as the sensing platform to detect Zn(II) in the range of 100 ρM with minimal photobleaching. Existing spiropyran based sensing molecules can thus be made biologically compatible, with an ability to operate with improved sensitivity using nanoscale liquid sample volumes. This work represents the first instance where photochromic spiropyran molecules and liposomes are combined to create a new and multifunctional sensing entity for Zn(II).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.