Summary DNA recombination and repair pathways require structure-specific endonucleases to process DNA structures that include forks, flaps, and Holliday junctions. Previously, we determined that the Drosophila MEI-9-ERCC1 endonuclease interacts with the novel MUS312 protein to produce meiotic crossovers, and that MUS312 has a MEI-9-independent role in interstrand crosslink (ICL) repair. The importance of MUS312 to pathways crucial for maintaining genomic stability in Drosophila prompted us to search for orthologs in other organisms. Based on sequence, expression pattern, conserved protein-protein interactions, and ICL repair function, we determined that the mammalian ortholog of MUS312 is BTBD12. Orthology between these proteins and S. cerevisiae Slx4 helped identify a conserved interaction with a second structure-specific endonuclease, SLX1. Genetic and biochemical evidence described here and in related papers suggest that MUS312 and BTBD12 direct Holliday junction resolution by at least two distinct endonucleases in different recombination and repair contexts.
In diploid eukaryotes, repair of double-stranded DNA breaks by homologous recombination often leads to loss of heterozygosity (LOH). Most previous studies of mitotic recombination in Saccharomyces cerevisiae have focused on a single chromosome or a single region of one chromosome at which LOH events can be selected. In this study, we used two techniques (single-nucleotide polymorphism microarrays and high-throughput DNA sequencing) to examine genome-wide LOH in a diploid yeast strain at a resolution averaging 1 kb. We examined both selected LOH events on chromosome V and unselected events throughout the genome in untreated cells and in cells treated with either γ-radiation or ultraviolet (UV) radiation. Our analysis shows the following: (1) spontaneous and damage-induced mitotic gene conversion tracts are more than three times larger than meiotic conversion tracts, and conversion tracts associated with crossovers are usually longer and more complex than those unassociated with crossovers; (2) most of the crossovers and conversions reflect the repair of two sister chromatids broken at the same position; and (3) both UV and γ-radiation efficiently induce LOH at doses of radiation that cause no significant loss of viability. Using high-throughput DNA sequencing, we also detected new mutations induced by γ-rays and UV. To our knowledge, our study represents the first high-resolution genome-wide analysis of DNA damage-induced LOH events performed in any eukaryote.
Bloom Syndrome, a rare human disorder characterized by genomic instability and predisposition to cancer, is caused by mutation of BLM, which encodes a RecQ-family DNA helicase. The Drosophila melanogaster ortholog of BLM, DmBlm, is encoded by mus309. Mutations in mus309 cause hypersensitivity to DNA-damaging agents, female sterility, and defects in repairing double-strand breaks (DSBs). To better understand these phenotypes, we isolated novel mus309 alleles. Mutations that delete the N terminus of DmBlm, but not the helicase domain, have DSB repair defects as severe as those caused by null mutations. We found that female sterility is due to a requirement for DmBlm in early embryonic cell cycles; embryos lacking maternally derived DmBlm have anaphase bridges and other mitotic defects. These defects were less severe for the N-terminal deletion alleles, so we used one of these mutations to assay meiotic recombination. Crossovers were decreased to about half the normal rate, and the remaining crossovers were evenly distributed along the chromosome. We also found that spontaneous mitotic crossovers are increased by several orders of magnitude in mus309 mutants. These results demonstrate that DmBlm functions in multiple cellular contexts to promote genome stability.
Summary Studies in the yeast Saccharomyces cerevisiae have validated the major features of the double-strand break repair (DSBR) model as an accurate representation of the pathway through which meiotic crossovers are produced. This success has led to this model being invoked to explain double-strand break (DSB) repair in other contexts. However, most non-crossover recombinants generated during S. cerevisiae meiosis do not arise via a DSBR pathway. Furthermore, and it is becoming increasing clear that DSBR is a minor pathway for recombinational repair of DSBs that occur in mitotically proliferating cells; rather, the synthesis-dependent strand annealing (SDSA) model appears to describe mitotic DSB repair more accurately. Fundamental dissimilarities between meiotic and mitotic recombination are not unexpected, since meiotic recombination serves a very different purpose (accurate chromosome segregation, which requires crossovers) than mitotic recombination (repair of DNA damage, which typically generates non-crossovers).
DNA repair mechanisms in mitotically proliferating cells avoid generating crossovers, which can contribute to genome instability. Most models for the production of crossovers involve an intermediate with one or more four-stranded Holliday junctions (HJs), which are resolved into duplex molecules through cleavage by specialized endonucleases. In vitro studies have implicated three nuclear enzymes in HJ resolution: MUS81–EME1/Mms4, GEN1/Yen1, and SLX4–SLX1. The Bloom syndrome helicase, BLM, plays key roles in preventing mitotic crossover, either by blocking the formation of HJ intermediates or by removing HJs without cleavage. Saccharomyces cerevisiae mutants that lack Sgs1 (the BLM ortholog) and either Mus81–Mms4 or Slx4–Slx1 are inviable, but mutants that lack Sgs1 and Yen1 are viable. The current view is that Yen1 serves primarily as a backup to Mus81–Mms4. Previous studies with Drosophila melanogaster showed that, as in yeast, loss of both DmBLM and MUS81 or MUS312 (the ortholog of SLX4) is lethal. We have now recovered and analyzed mutations in Drosophila Gen. As in yeast, there is some redundancy between Gen and mus81; however, in contrast to the case in yeast, GEN plays a more predominant role in responding to DNA damage than MUS81–MMS4. Furthermore, loss of DmBLM and GEN leads to lethality early in development. We present a comparison of phenotypes occurring in double mutants that lack DmBLM and either MUS81, GEN, or MUS312, including chromosome instability and deficiencies in cell proliferation. Our studies of synthetic lethality provide insights into the multiple functions of DmBLM and how various endonucleases may function when DmBLM is absent.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.