Global consumption of protein is projected to double by the middle of the 21st century1. However, protein production is one of the most energy intensive and environmentally damaging parts of the food supply system today. Electromicrobial production technologies that combine renewable electricity and CO2-fixing microbial metabolism could dramatically increase the energy efficiency of commodity chemical production2–5. Here we present a molecular-scale model that sets an upper limit on the performance of any organism performing electromicrobial protein production. We show that engineered microbes that fix CO2 and N2 using reducing equivalents produced by H2-oxidation or extracellular electron uptake could produce amino acids with energy inputs as low as 64 MJ kg-1. This work provides a roadmap for development of engineered microbes that could significantly expand access to proteins produced with a low environmental footprint.
Global consumption of protein is projected to double by the middle of the 21st century. However, protein production is one of the most energy intensive and environmentally damaging parts of the food supply system today. Electromicrobial production technologies that combine renewable electricity and CO2-fixing microbial metabolism could dramatically increase the energy efficiency of commodity chemical production. Here we present a molecular-scale model that sets an upper limit on the performance of any organism performing electromicrobial protein production. We show that engineered microbes that fix CO2 and N2 using reducing equivalents produced by H2-oxidation or extracellular electron uptake could produce amino acids with energy inputs as low as 64 MJ kg−1, approximately one order of magnitude higher than any previous estimate of the efficiency of electromicrobial protein production. This work provides a roadmap for development of engineered microbes that could significantly expand access to proteins produced with a low environmental footprint.
By the end of the century tens of gigatonnes of CO2 will need to be removed from the atmosphere every year to maintain global temperatures. Natural weathering of ultramafic rocks and subsequent mineralization reactions can convert atmospheric CO2 into ultra-stable carbonates. But, while natural weathering will eventually draw down all excess CO2, this process will need hundreds of thousands of years to do it. The CO2 mineralization process could be accelerated by weathering ultramafic rocks with biodegradable lixiviants like organic acids. But, in this article we show that if these lixiviants are produced from cellulosic biomass, the demand created by CO2 mineralization could monopolize the world's supply of biomass even if CO2 mineralization performance is high. In this article we demonstrate that electromicrobial production technologies that (EMP) combine renewable electricity and microbial metabolism could produce lixiviants for as little as $200 to $400 per tonne at solar electricity prices achievable within the decade. Furthermore, this allows the lixiviants needed to sequester a tonne of CO2 to produced for less than $100, even with modest CO2 mineralization performance.
The global demand for critical rare earth elements (REE) is rising with the increase in demand for sustainable energy technologies like wind turbines, electric vehicles, and high efficiency lighting. Current processes for producing REE require high energy inputs and can produce disproportionate amounts of hazardous waste. Biological methods for REE production are a promising solution to this problem. In earlier work we identified the most important genetic mechanisms contributing to the REE-bioleaching capability of Gluconobacter oxydans B58. Here we have targeted two of these mechanisms to generate a high-efficiency bio-mining strain of G. oxydans. Disruption of the phosphate-specific transport system through a clean deletion of pstS constitutively turns on the phosphate starvation response, yielding a much more acidic biolixiviant, and increasing bioleaching by up to 30%. Coupling knockout of pstS with the over-expression of the mgdh membrane-bound glucose dehydrogenase gene, results in up to 73% improvement of REE-bioleaching.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.